
1

Efficient Protocols For Secure Broadcast In

Controller Area Networks
Bogdan Groza, Member, IEEE, and Stefan Murvay, Student Member, IEEE

Abstract— Controller Area Network is a bus commonly used
by controllers inside vehicles and in various industrial control
applications. In the past controllers were assumed to operate
in secure perimeters, but today these environments are well
connected to the outside world and recent incidents showed
them extremely vulnerable to cyber-attacks. To withstand such
threats, one can implement security in the application layer
of CAN. Here we design, refine and implement a broadcast
authentication protocol based on the well known paradigm of
using key-chains and time synchronization, a commonly used
mechanism in wireless sensor networks, which allows us to take
advantage from the use of symmetric primitives without the
need of secret shared keys during broadcast. But, as process
control is a time critical operation we make several refinements
in order to improve on the authentication delay. For this we study
several trade-offs to alleviate shortcomings on computational
speed, memory and bandwidth up to the point of using reduced
versions of hash functions that can assure ad hoc security. To
prove the efficiency of the protocol we provide experimental
results on two representative microcontrollers from the market:
a Freescale S12X and an Infineon TriCore, both devices were
specifically chosen as they are located somewhat on the extremes
of computational power. As bandwidth proved to be the main
limitation, to provide clear bounds on the effectiveness of the
solution we used low speed, fault tolerant and high speed
communication as well.

Index Terms— Authentication, Broadcast, Controller Area Net-
work, S12X, TriCore.

I. MOTIVATION AND RELATED WORK

C
ONTROLLER Area Network or simply CAN is a com-

munication bus frequently used in vehicular systems

and also common in general purpose automations. Initially

developed by BOSCH [32], the current specifications for CAN

are found in the newer standard ISO-11898 [34]. Numerous

further improvements appeared in the literature: dual channel

architectures [10], flexible time-triggered communication [1],

star topologies [6], [5], dynamic identifiers to improve timing

requirements [9], etc. It’s success in vehicle applications led to

the introduction of CAN in the aeronautical sector with several

domain specific adaptations [28]. As data throughput has

increased inside cars, high performance buses were developed

in the last decade, e.g., FlexRay, but because of its efficiency

and reduced cost CAN is still present in most automotives

Manuscript received September 20, 2011. Accepted for publication Novem-
ber 29, 2012. Copyright c© 2012 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
B. Groza and S. Murvay are with the Faculty of Automatics and Computers,
Politehnica University of Timisoara, Romania. Phone: +40-256-403242, e-
mail: bogdan.groza@aut.upt.ro, stefan.murvay@gmail.com

produced today. Due to its reliability and excellent price-

performance ratio, CAN bus is likely to remain wide-spread

for a long time, especially in applications that do not require

high bandwidth.

Reliability was always a main concern in control systems

and in automotives in particular, but only with respect to

natural phenomenons (electromagnetic disturbances, thermal

noise, etc.) or accidents of various causes and not in front of

active Dolev-Yao adversaries. For this purpose, CAN has been

designed to deal with errors and to recover afterwards. The

probability of an undetected error on CAN is extremely low,

informally one undetected error occurs at about one thousand

years for each vehicle that operates eight hours a day with an

error each 0.7s. The first in-depth study on the performance

of CAN error detection mechanisms was done by Charzinski

in [12].

In the last decade, industrial control and automation systems

become opened to malicious adversaries and a significant part

of the security community focused on alleviating potential

threats in such environments [15], [17]. Also, recent incidents

of international level, such as the Stuxnet worm, have shown

that embedded devices are not as isolated as once thought

and can become vulnerable targets [16]. As for in-vehicle

security, recent research showed current automobiles to be

unexpectedly vulnerable to external adversaries [20], [13]

and it is likely that many other environments in which CAN

operates are not completely isolated from the outside world.

Two comprehensive books for security in automotives and

cryptography based solutions in particular are [22] and [19],

both contain relevant chapters on intra-vehicle security. Also

several research papers published in the last years address

these issues [4]. Still, to best of our knowledge there is

no implementation available to assure authenticity in CAN

networks.

In this context, of malicious adversaries that can manipulate

messages over the network, CAN does not have intrinsic sup-

port for any kind of security. Indeed, such kind of security is

not needed if one sees CAN as operating in a secure perimeter.

But, it is very likely that soon CAN-like networks will operate

in environments that are open for intruders. To withstand such

threats, security can be implemented at the application level.

In a different context, such improvements were used in the

past when deterministic delays were needed on CAN bus

with the development of Time Triggered CAN [35]. Thus,

the main intention of this paper is to develop a higher layer

implementation of a broadcast authentication protocol and to

study several trade-offs to increase its efficiency.

2

A. Related work on secure broadcast protocols

Although digital signatures provide an elegant method for

signing broadcast data, they are not the solution in our

context because of both the computational and communication

overhead. As messages are short in CAN networks, usually

fitting in the 64 bits of data carried by one CAN frame, using

a public-key primitive such as the RSA requires thousands

of bits and causes a significant overhead. Elliptic curves

can significantly reduce the size of the signatures, but still

the computational overhead is too much to assure small

authentication delays. While the computational overhead can

be alleviated by dedicated circuits, such as ASICs and FPGAs,

this will increase the cost of components, an issue that is

largely avoided by manufacturers. One alternative to digital

signatures such as RSA, or ECDSA is the use of one-time

signatures which were initially proposed by Merkle in [26].

Although they are frequently mentioned in the literature as a

cheaper alternative to conventional signatures, they are quite

unused in practice, mostly because of their one-time nature.

Using Merkle trees makes them viable for multiple uses, but

it requires sending an entire path of a tree, and generating,

potentially storing all this tree on the signer side, which

requires even more resources. There is good literature available

on the subject but this line of research appears to have a

reduced practical impact as one-time signatures are not so

common in practice.

In contrast, symmetric primitives were efficiently employed

for authentication in constrained environments such as sensor

networks [30], [23], [24]. Due to the broadcast nature of CAN,

protocols similar to the well known TESLA protocol [31],

[29] can be used in this context as well. Indeed, some of

the constraints are similar. For example, computational power

is also low and, although high speed microcontrollers are

also available on the market, low speed microcontrollers

are preferred to reduce costs. While TESLA like protocols

introduce delays that could be unsuitable for all real-time CAN

based applications, there is a broad area of applications where

they could be tolerated in exchange for security. In particular,

delays in the order of milliseconds, or even below as proved

to be achievable by our proof-of-concept implementation, are

suitable for a broad area of real-time control tasks. Many

examples of network control scenarios that can accommodate

such delays can be found in the literature [25].

There is an extensive bibliography related to the TESLA

protocol. Its history can be traced back to Lamport’s scheme

which uses one-way chains to authenticate users over an

insecure network [21]. The work of Bergadano et al. [8]

proposes several variants of one-way chain based protocols,

with or without time synchronization. Previous work which

inspired this family of protocols is the Guy Fawkes protocol

from [2]. The context which is more related to our setting

here is that of the application of such protocols in sensor

networks. In particular, several trade-offs for sensor networks

were studied by Liu and Ning in [23], [24] and several variants

of the protocols are presented by Perrig et al. as well in [31],

[29].

Also several papers addressed hybrid versions in which

asymmetric primitives are mixed with key-chains in order to

obtain trade-offs [7], [11], [3]. However, these variants have a

bigger communication or computational overhead and do not

appear to be appropriate for our application setting.

B. Contribution

The main argument for choosing a TESLA like protocol in

our research here is that this is the best solution to perform

broadcast authentication without secret shared keys or public

key primitives. Also, there is no result so far, to best of our

knowledge, that points out clear technical limits on using

TESLA like protocols on CAN networks. Thus, we provide

clear experimental results on two microcontrollers located

somewhat on the extremes of computational power, memory

and bus speed: an S12 equipped with an XGATE coprocessor

and an Infineon TriCore.

In previous work [18] we used a classical multi-layer key-

chain in order to authenticate broadcast in CAN. Compared

to our previous approach, we improve here the performance

by almost 2 orders of magnitude. This is achieved first

by using two schemes that have ad hoc security and use

reduced versions of hash functions. Second, we used for the

experimental setup a stronger microcontroller from Infineon

capable of high-speed CAN that works up to 1 Mbps, while in

previous work we used only the fault tolerant version of CAN

limited to 125 kbps. More concrete, while our previous result

allowed an authentication delay of around 10ms, we make the

authentication delay here to drop in the order of 300µs.

The improvements provided here are relevant as the au-

thentication delay is critical for control scenarios. This is

different to the usual sensor-network scenario where TESLA

like protocols are frequently used because in sensor networks

other constraints are more prevalent. For example, energy

consumption is a critical issue in sensor networks, but usually

for control units inside a car this is not a main concern since

controllers do not strongly rely on small batteries. The most

critical part, in control systems where this protocol is mostly

used, is the authentication delay, i.e., how fast a packet can

be deemed as authentic. In particular we must assure that a

node, if the bus is not taken by a higher priority message, is

able to transmit the message and the message can be checked

for authenticity as soon as possible. This condition is initially

limited by the computational power, but as checking for

authenticity can happen only as soon as the disclosure delay

expires and the next element of the chain is committed, this

also depends on the structure of the chain which is determined

by the amount of memory, and also by the bandwidth. While in

sensor networks the disclosure interval is usually in the order

of tens or hundreds of milliseconds here we bring this delay

lower by 2 to 3 orders of magnitude. Depicting an optimal

protocol configuration in this context is not straight forward

and we study several trade-offs in what follows.

The paper is organized as follows. Section 2 gives an

overview of the protocol, starting from several details of the

CAN protocol to the examination of the influence of chain

lengths, structure and timings on performance. In section 3

we present some practical variants of the scheme and we

3

discuss their theoretical efficiency as well as issues regarding

synchronization and coexistence with other traffic on the bus.

Experimental results on a state-of-the-art TriCore microcon-

troller from Infineon are provided in section 4. Section 5 holds

the conclusions of our paper.

II. ENVIRONMENT AND PROTOCOL DESCRIPTION

CAN is a two wire broadcast bus as shown in Figure 1.

There is also active interest toward using star topologies in

CAN networks [6], [5] and this would have certain advantages

from a security perspective. The structure of the CAN frame

consists in the arbitration field (referred in what follows as

the identifier ID), 6 bit control field, 0-64 bits of data, 15 bit

CRC and a 2 bit acknowledgement. Additionally 1 bit marks

the start of frame and 7 bits mark its end. This structure is

suggested in Figure 2. Arbitration is based on the identifier ID

which has 29 bits in extended frames and 11 bits in standard

frames. The winner is determined based on the state of a

particular bit, namely recessive bits (value 1) are overwritten

by dominant bits (value 0). So, if the case, all nodes can

start to write a message at the same moment on the bus, but,

whenever a node writes a recessive bit and reads a dominant

one it means that it lost the arbitration and will stop, otherwise

it can continue. Arbitration based on message priority is a

relevant feature of the bus, but it is transparent to our protocol

from an upper view. In our implementation, we just make sure

that keys and other security elements have the highest priority.

The identifiers are generally fixed and are not changed during

runtime, however assigning dynamic IDs was suggested in the

past [9] in order to improve on timing requirements and can

be considered in further optimizations for particular scenarios.

After each 6 consecutive bits of identical values a stuffing bit

of different value is added. The body of a message can have

at most 8 bytes and is followed by a 15 bit CRC. In the worst

case a frame can have 154 bits out of which only 64 bits are

of actual useful information. Thus, the overhead is high from

the basic design of the protocol, in the worst case exceeding

50%. But this is needed to achieve reliability as mentioned

before. Two kinds of CAN nodes are commonly available on

the market: fault tolerant low-speed nodes which operate at

125kbps and high-speed nodes that work up to 1Mbps.

Indeed, as shown by this brief description, CAN is a

message oriented bus while TESLA appears to be source

oriented, i.e., it assures that a message originates from a

particular sender. We emphasize that there are many practical

scenarios in which the source of a particular CAN message

does matter and in practice identifiers are frequently uniquely

associated to a particular node. Thus the message oriented

nature of CAN should not be interpreted in a strict sense,

where the source of the message is irrelevant. Even for the case

of an ID oriented authentication (where authentic messages

with the same ID can originate from different nodes) a TESLA

like protocol will prove to be more suitable for adding new

nodes on the bus since they can authenticate messages via the

broadcast scheme without needing to share the secret key for

a particular ID.

From an upper view, the design paradigm is the following.

Memory, computational speed, bandwidth, initialization time

μC μCμC

Transceiver Transceiver Transceiver

CAN-H

CAN-L

Fig. 1. Generic CAN topology.

������������	A

B�CD����D�E

F�E����

������DA��

����	�������CD���

�E��������	A

BF�

F�F

FB����������	A��� ���

Fig. 2. Structure of a CAN data frame.

and the synchronization error give bounds on the structure

of the chains that we can use. This further bounds the

authentication delay, i.e, the delay at which authentication keys

arrive on the bus, which is crucial to us as messages cannot

be authenticated faster than the disclosure delays. To improve

on this delay, we design several variants of the protocol that

are presented in section 3.

All protocol variants use multiple levels of one-way key

chains with the structure suggested in Figure 3. The relevant

notations with respect to the chain structure are: ℓ the number

of chain levels, σi, i = 1..ℓ the length of the chain on level i,

δi, i = 1..ℓ the disclosure delay on level i, ξ the safety margin

for releasing authentication packets and δnorm the normalized

disclosure delay which will be clarified in the next section

along with other details. Informally, bullets depict keys from

the key chains and the horizontal black arrows denote that they

are derived from a previous key. As usual in such protocols,

keys are generated and consumed in a reverse order, thus the

time arrow on the bus points in opposite direction to the arrows

that generate the keys. Packets arriving on the communication

bus are depicted as well, the dotted lines from an element of

the chain to the packet denotes that the element was used as

a key, and for the re-initialization packets in particular one

element of the key chain was also used as a message. Packets

containing keys are marked by K and commitments, i.e., MAC

codes that authenticate forthcoming key chains, are marked by

C.

Before the broadcast protocol can run, we need an initializa-

tion protocol. Its role is to allow each unit to commit or retrieve

its initialization values and to achieve time synchronization

with the sender. This part of the protocol can also rely on

more expensive algebraic operations required by public-key

cryptography. For example, each principal can authenticate

itself by using a public key certificate that is signed by a

4

trusted authority. Initial authentication based on public-key

infrastructure can be preferable to assure composability. Thus

we require that each node must store the public key of a trusted

authority. Although public key certificates are larger and will

require more than one frame (which can carry at most 64

bits) in general it should not be a problem to transport them

over CAN if this does not happen too often and just in the

initialization stage. If public keys are not a feasible alternative,

then initialization keys can be hardcoded in an off-line manner.

Time synchronization is done with respect to a central

node, which will play the role of a communication master.

As usual, synchronization between two nodes is loose and it

requires a handshake and counting the round trip time until it

is below a tolerance margin. This is usually achieved in two

protocol steps as follows: A → B : NA;B → A : SigB(tB,NA).
Here NA denotes a nonce generated by principal A and tB
denotes the current time at principal B when sending its

response. Afterwards, the round trip time εAB becomes the

synchronization error. If the nonce was sent by A at time t0
and now A’s clock points to t1 then A knows that the time on B

side is in the interval [tB + t1 − t0, tB + t1 − t0 +εAB]. However,

in our scenario a digital signature costs tens, or hundreds of

milliseconds, which will result in an even larger disclosure

delay. Because of this, instead of a digital signature we will

use a message authentication code which is several orders of

magnitude faster. In particular, in our experiments, the round-

trip-time was less in the order of several hundreds micro-

seconds as shown in the section dedicated to experimental

results.

A. Sender’s Perspective

For the sender side, we first define the structure of the key

chain with respect to each level and then we define the precise

timings for the disclosure of each key. We make use of a timing

template which is used to compute the timings for each level

(based on chain lengths and disclosure delays) and a function

template which is used to generate the keys on each level

(based on a one-way function). Different to previous work,

we use the function template to allow the generation of chains

from different levels, with different functions, that will provide

good speed-ups in the following variants.

Definition 1. We define the timing template as an ℓ-
tuple of positive integer pairs denoting the chain length

and disclosure delay for each particular level, i.e., Tℓ =
{(σ1,δ1),(σ2,δ2), ...,(σℓ,δℓ)}.

Definition 2. We define the function template as an ℓ-tuple

of functions that are used to generate the keys on each level,

i.e., Fℓ = {F1, ...,Fℓ}.

Definition 3. We define the indexed key collection KT,F as a

tuple of time-indexed keys Kτ, i.e., keys entailed by a vector τ
with ℓ elements that defines the exact disclosure time for the

key. Given timing template Tℓ, function template Fℓ a time-

indexed key is generated as: Kτleft|τi|0
= Fi(Kτleft|τi+1|0),∀i ∈

[1, ℓ],τi ∈ [0,σi −1].
Here Kτleft|σi|0

is the initialization key for the particular

key-chain, computed via a key-derivation process from some

random fresh material generated at each initialization as

Kτleft|σi|0
= KD(Krnd,τleft), Krnd is some fixed random value

and KD is a key derivation function. Here τleft is a placeholder

for any left part of the index vector τ and the right part, denoted

by 0, is always zero.

The previous definition allows the generation of chains

on multiple levels with the specified length as suggested

in Figure 3.

Now we can establish the exact disclosure time for each key.

For this we let tstart denote the time at which the broadcast

was started on the sender side and assuming there are no clock

drifts for the sender the exact release time of the keys follows.

Definition 4. Let DT (Kτ,Tℓ) denote the disclosure time

of the indexed key Kτ based on timing template Tℓ. Given

a broadcast started at tstart the disclosure time of Kτ is:

DT (Kτ,Tℓ) = tstart +∑i=1..ℓ(δi · τi).

B. Receiver’s Perspective

We consider the case of a receiver R and sender S with

synchronization error εS ,R . Now we define the security condi-

tion that must be met by all packets that contain authentication

information, i.e., MAC codes, produced with an indexed key

Kτ.

Definition 5. Given synchronization error εS ,R and tS the

time value reported by S on a synchronization performed at

tsync with R , the minimum and maximum time on the S ’s

side, estimated by R having local clock pointing at tR are:

ET min(tR) = tR − tsync + tS , ET max(tR) = tR − tsync + tS +
εS ,R .

Definition 6 (Security Condition). Given timing template Tℓ,

an authentication packet computed with Kτ received at time

tR must be discarded unless: ET max(tR)≤ DT (Kτ,Tℓ).
This condition ensures that an authentication packet is not

accepted after the authentication key was already disclosed.

C. Generic Description of the Protocol

The generic description of the protocol now follows. We

underline that this description does not include particular

optimizations that are presented in the section dedicated to

practical variants. It works only as a high level description for

the forthcoming protocols.

Definition 7. Given indexed key collection KT,F and two

roles called sender and receiver denoted by S and R each

with synchronization error εS ,R , protocol BroadcastS ,R [KT,F]
is defined by the following two rules for the two roles: i) S

sends Kτ at DT (Kτ) and MAC(Kτ,M) in any empty time-

slot with the condition that MAC(Kτ,M) is released no latter

than DT (Kτ)+ ξ. Message M can be released at any time,

ii) R discards all MAC(Kτ,M) received at tR for which

ET max(tR)≤ DT (Kτ,Tℓ) does not hold and deems authentic

all other messages for which MAC(Kτ,M) can be verified

with an authentic key. A key Kτleft|τi|0
is authentic if and

only if Kτleft|τi|0
=F (Kτleft|τi+1|0) and Kτleft|τi+1|0 is a previously

received authentic key (note that Kτleft|0|0
must be committed

via a MAC).

Here ξ denotes a tolerance margin for the time at which a

MAC with a particular key can be sent. Indeed, sending MACs

too close to the disclosure time may be useless because the

5

3s

1d

2d

BUS CC

key

value value

keykey
3s

2d

norm
d

norm
d

norm
d

norm
d

2s

K K KKKKKCK

value key key key key key key key

key

x x x

norm
d

norm
d norm

d
norm
d

t

level 1

level 2

level 3

Fig. 3. Broadcast sequence with normalized time δnorm.

receiver may have to discard them if the security condition

cannot be met. Thus ξ must be fixed as initial setup parameter

for the protocol. In time interval [DT (Kτ),DT (Kτ)+ ξ] the

sender can safely disclose any kind of data packet, but not

MACs.

BroadcastS ,R [KT,F] is a secure broadcast authentication

protocol. The security of this family of protocols is well

established, formal proofs of security can be found in [8]

and [31]. The informal argument is that from MACK (M)
and F(K) an adversary cannot produce MACK (M′) for any

M′ 6= M since K is not known as well as it cannot be found

from F(K). By the time K is released it is already too late for

the adversary to send a MAC and a message as they will not be

anymore accepted by the receiver due to the time constraint.

A more formal proof sketch can be done by using random

oracles. It is commonly acknowledged that although random

oracles do not give an absolute proof they can be used at

least as a sanity check to prove the security of protocols.

If we assume that oracle OF that computes function F can

be replaced by a random oracle OR, which outputs k bits,

the proof is straight forward. Assume that the adversary has

witness polynomially many queries p(k) to oracle OR. Suppose

at some point the adversary is forced to produce MACK (MAdv)
for some message of its choice. The adversary knows just

OR(K) which is the output of the random oracle and K is

unpredictable subject to the fact that it may have been already

asked by the adversary to OR. This means he can guess it and

produce a valid MAC only with probability 1/(2k − p(k)) -

which is negligible.

D. Efficiency parameters

The efficiency of the protocol can be evaluated with respect

to memory, CPU and bandwidth. This evaluation has to be

done over the entire time horizon of the protocol which can be

divided in two parts: initialization time Tinit and runtime Trun.

However, bus loads and CPU utilizations, that are going to be

defined next, are more relevant only over Trun as it is natural

to expect that during Tinit the initialization can takeover the

entire bus and CPU but only for a very short period of time.

We will use the following notations: MEM, CPU, BUS and

their capacities are depicted in the number of keys that can be

stored, computed or sent.

For all of these notations, a subscript indicates whether

they refer to the initialization stage or the runtime stage. Thus

CPUinit refers to the amount of work during initialization and

CPUrun during runtime. By MEMtotal, CPUtotal and BUStotal

we refer to the total available computational power and bus

capacity during the entire run-time of the protocol - we use

these measures to define CPU and bus loads during runtime.

To indicate whether a resource is needed for computing keys

or commitments through MAC codes we use key and com as

superscripts.

Definition 8. Given key collection KT,F we let ‖ KT,F[i] ‖
denote the total number of keys on level i disclosed during

protocol lifetime and 〈〈KT,F[i]〉〉 the number of key chains from

level i.

Obviously we have ‖KT,F[i] ‖= σi ·〈〈KT,F[i]〉〉 since the total

number of keys is the number of chains multiplied with the

chain length. We will use both notations, although it is easy

to derive one from the other, in order to make the following

relations more intuitive.

Definition 9. Let {(c0,m0),(c1,m1), ...,(cℓ,mℓ)} define the

CPU and memory requirements for all elements of the function

template F. For protocol BroadcastS ,R [KT,F] we define the

following overheads caused by key-chains:

MEM
key
init =MEMkey

run = ∑
i=1,ℓ

σi ·mi (1)

CPU
key
init=∑

i=1,ℓ

σi · ci CPUkey
run=∑

i=2,ℓ

ci · (‖KT,F[i] ‖−σi) (2)

CPUcom
init =∑

i=1,ℓ

ci CPUcom
run =∑

i=2,ℓ

ci · (〈〈KT,F[i]〉〉−1) (3)

BUSkey
run = ∑

i=1,ℓ

mi· ‖KT,F[i] ‖ (4)

BUScom
init = ∑

i=1,ℓ

mi BUScom
run =∑

i=2,ℓ

mi · (〈〈KT,F[i]〉〉−1) (5)

6

Equation 1 gives the memory requirements which is the

sum of the lengths of the chains. In the case of memory

there are no variations during initialization and runtime. More,

we do not need additional memory to store commitments on

the sender as commitments can be sent as soon as they are

computed. Equation 2 gives computational time required for

keys at runtime and initialization. In the initialization one chain

is computed on each level. At runtime, there are 〈〈KT,F[i]〉〉 key-

chains on each level, and each of them has to be computed

except the first one which was computed during initialization

which gives CPUkey
run = ∑i=2,ℓ ci ·σi · (〈〈KT,F[i]〉〉−1). Replacing

σi · 〈〈KT,F[i]〉〉 with ‖ KT,F[i] ‖ we get the claimed number of

keys computed at runtime. In Equation 3 commitments are

measured: one commitment on each level during initialization,

and later for each chain on each level (except for the first one

which was committed during initialization) one commitment

is needed. Bus requirements for keys during runtime is given

in Equation 4. All keys from all levels are sent on the

bus, while there are no keys (just commitments) sent during

initialization. Commitments are given in Equation 5. One chain

on each level is committed in the initialization, and later at

runtime all chains are committed except for the first one, same

as in the case of computational requirements.

To complete the view on efficiency, we should also define

the CPU and bus loads over the entire lifetime of the protocol.

Definition 10. Given RES ∈ {MEM,CPU,BUS}, state ∈
{run, init} we define the protocol overheads as: RESloadstate =
(RESkey

state+REScom
state)/RES

total
state .

One can add to these the overhead induced by the message

authentication codes associated to each data packet that is

sent over the bus. This is however application dependent, not

protocol dependent as in some applications the size of the

data packets can be small, and thus adding a MAC to each

data packet will greatly increase the overhead while in other

applications it may be the reverse, and data packets can be

large and the MAC will not significantly increase the overhead.

III. PRACTICAL VARIANTS

Now we discuss practical variants of the main scheme.

Obtaining a variant that is adequate, possibly optimal, for prac-

tical use means to satisfy the constraints of the environment.

The generic calibration criteria for the scheme parameters is

the following. Having fixed Trun and δnorm we determine chain

structure (lengths and levels) and timings which give Tℓ, Fℓ

and KT,F. Then, we determine bus, CPU and memory loads

for comparison.

A. The Multi Master and Single Master Case

CAN allows each node to be a potential sender. The case of

k senders can be easily derived from the previous formalism.

We can multiplex the senders by using δnext which we call

the next sender delay. By this, we can modify the disclosure

timings to DT k(Kτ) = DT (Kτ) + k · δnext and the security

condition accordingly for the case of k senders.

However, allowing more than one sender will result in a bus

that is heavily loaded by keys and commitments. To avoid this,

having only one communication master is preferable. In the

case when one of the slave nodes needs to broadcast authentic

information it can perform a request to the communication

master under the assumption that each slave node shares a

secret key with the master that can be used for authentication.

We can take advantage of the CAN nature as each slave can

place its data frame on the bus, along with a message authenti-

cation code computed with the shared key. The communication

master can verify this MAC and, if correct, it will send a next

frame that contains the broadcast authentication information,

i.e., the MAC with the current key according to the broadcast

protocol. The rest of the protocol is unchanged, we do not give

a methodology to compute parameters as this is going to be

discussed for the next variants. This approach will not increase

the authentication delay if the slave nodes are able to send the

message and its MAC during the same disclosure period in

which the master can continue to broadcast the authentication

MAC.

B. Equidistant Timing (Delayed) Authenticated CAN (ETA-

CAN)

For practical reasons, a solution which assures a uniform

bus load is preferable. This is mostly because packets carrying

data must be delayed until all keys and commitments are sent

since they have priority on the bus (otherwise the protocol will

succumb and have to be re-initialized).

For this, we use a procedure which we call equidistant

timing by which all keys are disclosed at moments of time

separated by equal delays. This is relevant also because we

can use upper layer chains not only to authenticate the com-

mitments of keys from the lower levels but also to authenticate

information packets as well. The same equidistant release

will be used for key commitments. Thus, we will normalize

the disclosure time on the last level and then compute the

disclosure delays on the upper levels. These disclosure timings

are suggested in Figure 3.

Definition 11. For the ETA-CAN we define the dis-

closure delays as: δℓ = δnorm = Trun/∑i=1,ℓ ‖ KT,F[i] ‖=
Trun/∏i=1,ℓ(σi+1)−1, δi = δnorm ·∏ j=i+1,ℓ(σ j+1),1≤ i< ℓ.

It is easy to note that given a fixed amount of memory

which must accommodate the chains and a fixed number of

levels ℓ, the disclosure delay δnorm and the overheads for

CPU and bus have an inverse variation. Thus: the minimal

disclosure delay is achieved if chains are of equal size while

the minimal computational and communication overhead is

achieved if upper level chains are smaller.

C. Balanced Equidistant Timing delayed Authenticated CAN

(BETA-CAN)

Based on the previous remark on efficiency we explore

the variant with chains of equal sizes on all levels. To

clarify previous notations Figure 4 shows an example of chain

structure for the case of σ = 3 (note that the same key-chain

size is on all levels).

Since the entire run-time of the protocol is Trun = δnorm ·

[(σ + 1)ℓ
BETA

− 1] the number of levels follows as: ℓBETA =

⌈logσ+1

(

Trun
δnorm

+1
)

⌉. The disclosure delay of the last level is

7

run
T

2000

32003300

10003000

010002000300110012001300210022002300310032003300

32203230 3210

32303300 32323233 3231

norm
d

3d

level 1

level 2

level 3

level 4

2d

Fig. 4. Chain structure with BETA with ℓ= 4,σnorm = 3,δnorm =Trun/255.

0 20 40 60 80 100 120
Σ

0.2

0.4

0.6

0.8

1.0

∆

HiL

4 levels

3 levels

0 50 100 150 200 250
Σ

0.2

0.4

0.6

0.8

1.0

BUS

HiiL

4 levels

3 levels

2 3 4 5 6
{

1000
2000
3000
4000
5000
6000
7000

MEM

HiiiL

2 3 4 5 6
{

2
4
6
8
10
12
14

BUS

HivL

Fig. 5. Various overheads and delay variation with length or levels: (i)
disclosure delay , (ii) overhead caused by keys and commitments on the bus,
(iii) keys stored in memory and (iv) commitments on the bus (per second).

δnorm while for the upper levels the delay can be computed

as: δBETAi = δnorm · (σ +1)ℓ
BETA−i.

Having these defined the performance indicators for mem-

ory, CPU and bus can be derived. These indicators are sum-

marized for all variants in Table I.

Figure 5 shows the influence of chain length and levels on

various parameters. Plots are taken for a time range Trun = 24

hours while the bus speed is approximated to about 6000

packets per second. In the case of variations with chain

lengths, plots (i) and (ii) are given for three and four levels

of key chains. We note that the delays drop rapidly by

increasing the number of levels in plot (i), but in the same

manner the overhead increases (ii) (at 100% the bus is locked

and communication halted). Plot (iii) shows the variation of

memory requirements, which is the same as the initialization

time, and plot (iv) of commitments with the number of chain

levels. The same drop of memory requirements and increase

in commitment packets can be seen. For plots (iii) and (iv) the

delay is fixed to 5 ms.

D. Ad hoc secure Balanced levels ETA-CAN (Ad-BETA-CAN)

To increase performance we will use reduced versions of

hash functions. The following definition is informal and will

serve only as a heuristic for the security of the schemes.

We call function Fk ad hoc secure with respect to time

interval δ if given y = Fk(x), with Fk(x) publicly known,

it is infeasible to find an x′ in time δ such that y = Fk(x
′)

(note that x′ does not necessary need to be same as x since

any x′ which has the same image under Fk will suffice to

break the protocol). Here k plays the role of an index for

function F. More concrete, in our practical implementation

we use for function Fk truncated versions of hash functions

in order to reduce the overhead on the bus. However, since

the image of F is reduced, for example to 32 bits in the

worst case, it can be feasible for an adversary to mount a

pre-computed dictionary attack. To avoid this, we compute

the α-bit truncated hash chain in the following manner: at

each step we compute Kτleft|τi|0
= ⌊Fk(kd||Kτleft|τi+1|0)⌋α. Here

kd stands from some material derived from the key template,

i.e., previously released keys, in order to assure sufficient

entropy against pre-computed attacks, similar to salting. Note

that the same truncation can be done for MAC codes under

the restriction that messages and keys are not released later

than the security lifetime δ (if the message or key is to be

released later, then the appropriate size for the MAC is to be

chosen).

Note that the disclosure delays are now needed to establish

the exact security level that must be met by functions on

each level of the chains. Therefore, these delays determine the

function template that can be used. For reduced variants of the

hash functions, only heuristic arguments can be given, that is,

protocol BroadcastS ,R [KT,F] is ad hoc secure with respect to

the corresponding disclosure timings.

Same as in the previous scheme, we use chains of equal

sizes to minimize the number of layers but we select different

functions on each level such that the function is ad hoc secure

with respect to the disclosure delay on the particular level.

Thus, given δnorm we first select the less intensive function

that is ad hoc secure with respect to δnorm. Then we assume

that this function is going to be used on all levels, take the

constraints on memory and CPU and successively try the

smallest value of ℓ until they are satisfied. Then, we proceed

from the ℓ-th chain upward to change the function to one that

is ad hoc secure with the respective delay. If the constraints

are not fulfilled we chose a bigger ℓ and so on. The number

of levels and the delays are computed in the same manner

as previously while performance indicators are summarized

as well in Table I. An explanatory example follows after the

introduction of the next scheme.

E. Ad hoc secure Greedy last level ETA-CAN (Ad-GETA-CAN)

This variant uses a greedy strategy in order to minimize

memory overheads. Given δnorm and Tinit we first select the less

intensive function that is ad hoc secure with respect to δnorm.

Then we use the entire Tinit time to compute a chain from the

last level, subject only to memory constraints, i.e., if memory

exhaust before Tinit we stop. For example, given σℓ the length

8

00010

00100

01000

00110

01100

010100111010010

10100

11000

1011011010

11100

11110

()4 1
norm norm

d s d= +

run
T

10000

5
s

1110011110 11101111021110311104111116

norm
d

4d

level 1

level 2

level 3

level 4

level 5

Fig. 6. Chain structure with GETA with ℓ= 5,σnorm = 16,δnorm =Trun/255.

TABLE I

SOME OVERHEADS AT INITIALIZATION AND RUN-TIME

BETA-CAN Ad-BETA-CAN

MEM⋆
key ℓ ·σ ·m σ ·∑i=1,ℓ mi

CPUinit
key ℓ ·σ · c σ ·∑i=1,ℓ ci

CPUinit
com ℓ · c c0 +∑i=1,ℓ−1 ci

BUSinit
com ℓ ·m m0 +∑i=1,ℓ−1 mi

CPUrun
key [(σ +1)ℓ−σ · ℓ−1] · c σ ·∑i=2,ℓ[(σ +1)i−1 −1] · ci

BUSrun
key [(σ +1)ℓ−1] ·m σ ·∑i=1,ℓ(σ +1)i−1 ·mi

CPUrun
com [(σ+1)ℓ−1

σ − ℓ] · c ∑i=2,ℓ[(σ +1)i−1 −1] · ci

BUSrun
com [(σ+1)ℓ−1

σ − ℓ] ·m ∑i=2,ℓ[(σ +1)i−1 −1] ·mi

of the chain on the last layer we choose the number of levels

ℓ. Then we set to 1 the length of each chain from level 1 to

ℓ−1. In this way we minimize the memory and computational

time for the upper layers. Since the number of upper layers is

maximum, due to the reduced chain length, this also increases

initialization overhead on the bus. Tinit should be only slightly

overloaded since the initialization time is minimum when the

number of levels is maximum. If memory is also exhausted by

the first layer, we cut down as many elements as are needed

to fit the upper layers.

Figure 6 depicts the structure of the chains in this case while

an explanatory example follows in the next subsection. The

parameters of the scheme can be computed as follows. Having

Trun = δnorm · [2ℓ
GETA−1 · (σ + 1)− 1] the number of levels

and the disclosure delay are: ℓGETA =
⌈

log2
Trun+δnorm
δnorm·(σ+1)

⌉

+ 1,

δGETAi = δnorm ·2ℓ
GETA−i−1 · (σ +1).

Note that the same relations hold for the GETA scheme with

or without ad hoc security. For simplicity, in the discussion that

follows we will omit the prefix ad whenever it is clear from

the context whether we refer to the standard scheme or to the

ad hoc secure scheme.

F. Comparison and limitations

We now give an explanatory example for the ad hoc secure

schemes. Assume the output of MD5 can be truncated to

32 bits for ad hoc security with respect to a delay of 10−3

seconds, 48 bits for 1 second, 64 bits for 103 seconds and left

unchanged to 128 bits for any delay greater than these. The

computational timings are around 11×10−6 according to the

experimental results from the next section and they serve here

as a calibration example. Note that computational speed is the

same for all truncated versions and the gain is only in the bus

load and memory requirements.

Let us fix for our example the disclosure delay to δnorm =
1ms with a one year runtime of the protocol Trun = 31×106s

and Tinit = 1s.

With the GETA scheme, by using computational power as

restriction we can compute up to 90.000 elements in Tinit

which is far too much for the memory, so we limit σℓ to

1000 which is reasonable to fit in memory and would ease

the computation. This gives ℓ= 26 with length 1000 on level

26 and 1 on the other levels. The disclosure delay on level

26 is 10−3s so we can use the 32 bit version. On level 25

the disclosure delay is around 2s so we skip to the 48 bit

version which can be used up to level 23 that has a delay of

8s. Levels up to 16 can use the 64 bit version and the rest of

the levels will use the 128 bit version. The overall memory

load is 1000× 32+ 3× 48+ 7× 64+ 15× 128 = 34512 bits.

The commitments on the bus reach up to 11× 109 bits in a

year.

With the BETA scheme, by fixing σ= 1000 we get ℓ= 4 but

this is due to the ceiling which increased the value from the

actual 3.5. With chains of 1000 elements this will increase

Trun too much and will require too much memory as well.

Note that the delay on level 4 is 10−3 and it increases on

each level with a factor of 1000, which means that roughly

level 1 uses the 128 bit version, level 2 the 64 bit version,

level 3 the 48 bit version and level 4 the 32 bit version. For

chains of length 1000 this gives a memory load of 1000×32+
1000×48+1000×64+1000×128, that is 272000 bits which

is almost 8 times more than for the GETA scheme but Trun has

also increased about 30 times. By empirical test we get that

σ = 428 will not change Trun and will require only 116416

which is just 3 times more than for GETA scheme. For the

commitments on the bus its the reverse as they reach up to

3.7×109 bits in a year which is 3 times less than for GETA.

Having a lighter bus load should be preferable for practical

applications, therefore BETA seems to be better.

Figure 7 shows the generic difference between the BETA

and GETA schemes assuming fixed delay and variable length

or the reverse. As already shown in the previous example,

the relevant aspect is that BETA gives a lighter bus due to

fewer chain commitments. However, GETA is much better in

terms of memory requirements, also a relevant constraint of

our environment.

G. Security considerations for the ad hoc secure scheme

It is not easy to define rigorous parameters for ad hoc

security. Here we used 32 bits as the minimum recommended

9

0.002 0.004 0.006 0.008 0.010
∆

100000

200000

300000

400000

MEM

HiL

200 400 600 800 1000
Σ

100000

200000

300000

400000

MEM

HiiL

0.004 0.006 0.008 0.010
∆

1.0´107
1.5´107
2.0´107
2.5´107
3.0´107
3.5´107

BUS

HiiiL

400 600 800 1000
Σ

1.0´108
1.5´108
2.0´108
2.5´108
3.0´108
3.5´108

BUS

HivL

Fig. 7. Comparison between BETA (continuous line) and GETA (dotted line)
schemes at MEM and BUS requirements for: fixed σ = 1000 and variable
δnorm in (i) and (iii), variable δnorm and fixed σ = 1000 in (ii) and (iv).

for authentication tags against ”real-time” attacks by the most

recent ECRYPT recommendations on key sizes [33]. This

security level is certainly enough against common equipments,

such as standard CPU’s, that can perform hashes in the order of

106 per second. Dedicated equipments, built on FPGAs and

more recently on GPU accelerators, can reach billions, i.e.,

109, of crypto-operations per second which is close to the 32

bit security bound. However, such equipments are not cheap,

their cost is usually in the order of tens of thousands of dollars

and thus they are not available to average adversaries. Even

for the case of such adversaries, with dedicated hardware and

high financial resources, we believe that 48 bits should still

be infeasible to invert in less than a second.

These considerations are helpful to assess the security of the

protocol from a quantitative perspective. Further, for validating

the security of large scale systems, where such protocols can

be part of, automatic verification with specialized tools is an

alternative. Using such techniques has become more frequent

in industrial systems, a case study on fieldbus is available

in [14].

H. Synchronization issues

The synchronization error achieved by the loose time syn-

chronization mechanism is small enough to accommodate

the disclosure delays of the protocol. Even for the smallest

disclosure delay in our practical implementation this error is

still less than half of it. Indeed, this can be further improved

by using more specialized protocols. A good start point could

be the Precision Time Protocol (PTP) but this protocol is not

cryptographically secure so further developments would be

necessary.

Clock drifts between oscillators can lead to more frequent

resynchronizations. Common recommendations for CAN bit

timings are a minimum oscillator tolerance of 1.49% at 125

kbps and 0.49% at 1 Mbps. These tolerances are enough

to eliminate frequent resynchronization for most disclosure

delays. However, if we push the disclosure delays to their

lower limit this can become a relevant issue.

We consider an example to clarify this. Around 300µs is

the minimum delay achieved in our application setting for

a 1Mbps CAN bus. A tolerance of 0.49% will result in a

maximum of 2×0.49%≈ 1% drift between the sender and the

receiver (considering the worst scenario in which oscillators

drift apart in opposite directions). This means that at each

300µs the receiver clock drifts with 3µs which means that

after 100 packets the receiver will either drop all subsequent

packets (if its clock is faster), or an adversary may be able to

forge packets (if its clock is slower). However, such a clock

drift results from using oscillator tolerances that are quite at

the edge. Let us emphasize that in our practical setting the two

Infineon TriCore controllers had a drift of around 2.73 seconds

after 24 hours when running at maximum speed. This leads

to a drift of 3.15ns at each 100µs and even after 1 second of

broadcast the drift is around 3µs which will keep the protocol

secure if we set ξ = 3µs. Thus, the first and the most natural

solution is to use better oscillators which are available on the

market and already present in most of the devices. In case they

are not available in a particular setting, higher authentication

delays should be considered.

Nevertheless, resynchronization can and should be per-

formed in a more efficient manner by using the broadcast

protocol as long as the node is not yet completely desynchro-

nized. Thus, nodes that have weak oscillator tolerances must

send a resynchronization request by placing a nonce on the bus

and the sender will answer with the usual MACK(time,nonce)
which will be authenticated with the forthcoming key K

released in the broadcast protocol. More concrete, for security

reasons, we enforce such a resynchronization to be performed

when it is expected that the clock of the sender and receiver

drifted by ξ. This leads in our practical scenario to send a

resynchronization packet in the worst case at each minute

(depending on the exact disclosure delay, safety margin and

microcontroller speed). Also note that for efficiency syn-

chronization can be in this way processed for more than

one receiver at once in the sense that different nonces from

different receivers can be merged by the broadcast master in

one response. Care should be taken since this will increase

the synchronization error while it is still mandatory for each

receiver to send its own fresh nonce. The resynchronization

procedure shouldn’t raise scalability problems if it is not

triggered too often.

I. Coexistence with other traffic

The influence of the broadcast traffic on already existent

real-time CAN bus traffic and vice-versa is a relevant topic.

First, let us underline that from the authentication point of

view, timing is critical only for keys and MAC codes (keys

are disclosed at precise moments and MACs must be released

no later than the corresponding key), while the authenticated

messages can be released at any point. There are two cases

that need to be considered.

In the first case, the broadcast authentication traffic has

higher priority than the real time real-time traffic existent on

the bus (which can be disturbed in this way). By construction

of the equidistant timing protocol, we assure that the keys are

10

uniformly distributed over the life-time of the protocol. Thus,

a scenario with periods of burst, with more keys than usual on

the bus, will not occur. The only burst may be due to MACs

that also need to be sent before the keys are disclosed. To avoid

disturbance of the real time traffic on CAN, we enforce the

use of the same priority for the MAC as for the message they

authenticate, and not a higher one. Thus, real-time constraints

will not be violated - each MAC has the same priority as the

message it authenticates.

In the second case, the broadcast authentication protocol has

lower priority than some of the existent traffic. Indeed, it is

not our main intention to use the protocol in such scenarios,

but tweaks in the protocol are possible to accommodate it

with already existent higher priority traffic. For this case we

propose the following strategy concerning the keys and the

MACs. As MACs cannot be released later than the keys but

their precise release time is not critical, they will be released

as quick as possible (roughly short after the release of the

previous key) which gives higher chances for a MAC to be

released in time. For the keys however, as premature release is

not feasible since this will change the timings of the scheme,

they will be released at the precise time they are scheduled or

as soon as the bus is free afterwards. Note that releasing the

keys later doesn’t cause any insecurity. An exception is the ad

hoc variant were the security level of the key and MACs should

be chosen according to the expected delays. For safety reasons,

in the case of lower priority for the broadcast protocol, one

can also enforce a key-recovery procedure. As re-initialization

of the protocol will be too expensive, for this purpose one can

use safety-chains, i.e., another upper layer of key-chains that

are computed a-priori by the sender to allow recovery after

an error has occurred. This allows a trade-off between traffic

priority and computational power.

Indeed, in the case of a heavily loaded bus, disturbances

between different types of traffic are unavoidable. In such

situations, physical separation between the two kinds of traffic

may be the best alternative.

IV. EXPERIMENTAL RESULTS

A proof-of-concept implementation was done in order to

determine the behaviour of the proposed solution in a real

environment. Our test setup consists of a master node and

multiple slave nodes. The communication master holds the

key chains which are used to send authenticated messages to

slave nodes.

A. Employed platforms

We made tests on Freescale S12X and Infineon TriCore,

two different classes of microcontrollers used in automotive

and industrial applications. The controller specifications are

described next.

1) The S12X chip: We used a SofTec Microsystems ZK-

S12-B development board shipped with MC9S12XDT512, a

Freescale 16-bit automotive microcontroller from the S12X

family. All members of this family are equipped with a co-

processor called XGATE which can be used to increase the

microcontroller’s data throughput. We made use of this module

to increase the efficiency of our implementation by assigning

it the task of computing cryptographic functions. The S12X

microcontroller that we used has 512kBytes of flash memory

and 20kBytes of RAM. Both FLASH and RAM memories are

banked. Thus, a total of 8kBytes of RAM space can be used

for continuous allocation while the rest of the RAM can be

accessed in a 4kByte window. The data-sheet specifies that the

maximum bus frequency that can be set using the PLL module

is 40MHz. We configured the PLL for frequencies beyond

this specified value and were able to go up to 80MHz without

introducing any abnormal behavior. The on-chip CAN module

can be programmed to function at bit-rates up to 1 Mbps. The

limitation for the maximum achievable CAN speed on the S12

development board is given by the on-board low speed fault

tolerant transceiver which can only run at speeds up to 125

kbps.

2) The TriCore chip: We also used Infineon TriCore micro-

controllers from the AUDO (AUtomotive unifieD processOr)

family. All members of this family are 32 bit microcontrollers

built for computational performance. For the communication

master we used a TC1797 microcontroller which fits in the

high-end segment. The TC1797 from the AUDO Future family

can work at frequencies up to 180MHz, has a program flash

memory of 4MB and a 64kB data flash along with 176kB of

SRAM. The slave node was implemented on a TC1782 which

is a mid range automotive microcontroller and a member of

the newer AUDO MAX family (but it is still based on the same

1.3.1 core version as TC1797). TC1782 has the same operating

frequency and SRAM size as TC1797 while the program flash

memory is reduced to 2,5MB and the data flash is double in

size to hold 128kB.

B. Computational performance

First, we evaluated the performance of the microcontrollers

for computing cryptographic primitives. Table II holds the

results of our measurements (performance cuts off at multiples

of 55 bytes due to block size and padding, input sizes are

chosen based on some test vectors in RFC-1321). The S12X

results were obtained for a frequency of 40 MHz (when

overclocking at 80 MHz the execution speed is doubled)

while TriCore microcontrollers were running at 180 MHz.

The two TriCore microcontrollers have the same core version

thus identical performances. These measurements show that

on average the primitives were performed approximately 2.12

times faster on XGATE than on S12X while the TriCore

implementations are, as expected, much faster (1 to almost

2 orders of magnitude).

The computation speed, memory and the low speed CAN

transceiver offer a considerable bound to the communication

speed achievable on the S12X implementation. The overall

computation time can be decreased by computing all cryp-

tographic primitives on the XGATE co-processor. While the

cryptographic functions are being computed on the XGATE

side, the main CPU is free to execute other tasks, such

as receiving messages or sending messages that have been

already built. After the program implementation, the total

RAM memory left for storing key chains can hold 1216

11

TABLE II

PERFORMANCE OF S12X, XGATE AND TRICORE.

Length
(bytes)

S12X (ms) XGATE (ms) TriCore (ms)

MD5 SHA-256 MD5 SHA-256 MD5 SHA-256

0 0.732 5.51 0.313 3.155 0.010 0.042

26 0.739 5.49 0.318 3.145 0.011 0.042

62 1.414 10.86 0.605 6.24 0.018 0.081

80 1.374 10.80 0.592 6.22 0.019 0.081

TABLE III

S12X AND TRICORE ROUND TRIP TIME.

Nonce MAC size (bytes)

size 1 2 4 8 1 2 4 8

(bytes) S12X (ms) TriCore (µs)

2 3.740 3.810 3.935 4.185 172.4 182.4 205.5 241.5

4 3.870 3.935 4.055 4.295 189.4 199.5 219.5 258.5

8 4.160 4.220 4.355 4.620 225.5 236.5 256.5 295.5

elements (16 bytes each). Having this upper limit for MEM, ℓ
and σ have to be determined for best performances based on

the bus speed and the wanted disclosure delay. If we consider

packets of 16 bytes in size the measured bus speed for sending

authenticated packets is 578 packets/second (one packet each

1.73ms) which could be considered too slow in a time critical

system.

To determine the effect of the bus speed on the synchro-

nization procedure, we measured the round-trip time for a

short message exchange. The slave node that wants to start

communication with the master first sends a nonce to the

master. Upon receiving this request, the master sends it’s

response containing the MAC computed over the nonce. The

measured round-trip time is the time span between the moment

in which the slave sends the nonce and the moment the

reception of the response from the master is over. Table III

holds or measurements for different nonce and MAC sizes. For

these measurements, the CAN bus speed was set to 1Mbps and

HMAC-MD5 with an 8 byte key was used for computing the

MAC. The length of the computed MAC is 16 bytes and we

obtained the smaller MACs by truncating this original value

to the desired length.

As Table III show there is little difference in round-trip time

if we change the nonce or MAC size from 1 to 8 bytes, since

only one CAN frame is sent in both cases. When we change

these sizes to 16 bytes the increase in round-trip time is greater

due to the overhead caused by having to send two CAN frames

instead of only one as the case for 1 and 8 bytes messages.

C. Adjusting parameters

Choosing the best combination of parameters highly de-

pends on the application and on the devices used for imple-

mentation. We therefore tried different values for the protocol

parameters on the TriCore implementation to find the best

suited setup. The parameters were chosen so that they fit for

authenticated communication over a time span of 10 years

TABLE IV

SOME PARAMETERS CHOICES FOR THE INFINEON TRICORE PLATFORM.

Key size 3 levels 3 levels

(bytes) δ(ms) M (bytes) σ δ(ms) M (bytes) σ

4 10 37704 3142 1 81216 6768

mixed 10 75408 3142 1 162432 6768

16 10 150816 3142 1 324864 6768

Key size 3 levels 4 levels

(bytes) δ(µs) M (bytes) σ δ(µs) M (bytes) σ

4 315.24 120024 10002 329.44 15840 990

mixed 318.08 239304 9971 332.28 39520 988

16 471.44 419808 8746 479.96 57664 901

without the need of reinitialization. Table IV contains some

of the parameter combinations we tried for our TriCore im-

plementation. The aim was to find the best parameter combina-

tions to obtain small authentication delays (equidistant timing

was used in all variants). The key chains were computed

using MD5 and for the MACs we used HMAC-MD5. We

underline that although MD5 does not offer collision resistance

anymore it is still secure enough for our application that

requires only secondary pre-image resistance. Using stronger

hash functions from the SHA-2 family or from the SHA-3

candidates will impair performances without much practical

justification. As computational results for these functions are

available in Table II, the protocol performance can be easily

deduced for these cases as well. For the case of the S12X

microcontrollers, due to the reduced computational power and

mostly due to the bus speed reduced to 125 kbps, delays in

the order of 10ms were the best we could achieve.

In the case of the Infineon TriCore, as the greatest com-

munication overhead was caused by the CAN frame format

and maximum transfer speed, we tried different key sizes.

When using the whole 16 bytes of the MD5 generated key, the

smallest authentication delay we could obtain was 471.44µs

for 3 levels. By using smaller keys (which we obtained by

truncating the 16 bytes output of MD5), the communication

overhead is reduced at the cost of a lower security level. A

4 byte key used on all levels would enable an authentication

delay of 315.24µs for a 3 level setup and 340.8µs for 5 levels.

A better trade-off can be made by assigning different length

keys to each level in order to provide enough security for the

key lifetime. As an example, we assigned a 4 byte key to the

first level, an 8 byte key for the second level, 12 bytes for the

third level and 16 bytes for all the other levels. For a 5 level

setup, each 4 byte key will have to last for 343.64µs while

the 8 byte keys on the second level will have a life time of

84.88ms. We underline that these delays show the minimum

achievable with our implementation and, since they are on

the extreme side, reaching them is quite consuming for the

computational resources of the devices as well as for the bus

load. For practical settings, delays from 1 to 10ms should be

easily handled by the TriCore controllers and will result in a

clean deployment without consuming much of the controller’s

12

resources or communication bandwidth.

V. CONCLUSIONS

We studied different trade-offs for the schemes in order to

determine an optimal choice of parameters. As expected, the

TriCore microcontroller clearly outperformed the S12X and

the authentication delays dropped by almost two orders of

magnitude. To improve even more, as the main limitation was

the speed of the bus, the ad hoc scheme was able to get the

delays even lower. In the best case these delays were in the

order of several hundreds micro-seconds. By this research we

hope that we give a first analysis on the feasibility of using

cryptographic authentication in CAN networks. Since by the

nature of this family of authentication protocols small delays

cannot be avoided, some applications may be too restrictive for

this approach. But we do expect that the delays achieved here

are suitable in many practical real-time scenarios. Integrating

the broadcast authentication protocol in such a real world

scenario is of great interest as future work for us.

REFERENCES

[1] L. Almeida, P. Pedreiras, and J.A.G. Fonseca. The FTT-CAN protocol:
why and how. Industrial Electronics, IEEE Transactions on, vol.49,
no.6, pp. 1189- 1201, 2002.

[2] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and
R. Needham. A new family of authentication protocols. SIGOPS Oper.

Syst. Rev., 32:9–20, October 1998.

[3] H. K. Aslan. A hybrid scheme for multicast authentication over lossy
networks. Computers & Security, 23(8):705 – 713, 2004.

[4] H. Bar-El. Intra-vehicle information security framework. In Proceedings

of 9th Embedded Security in Cars Conference, ESCAR, September 2009.

[5] M. Barranco, J. Proenza, and L. Almeida. Quantitative comparison of
the error-containment capabilities of a bus and a star topology in CAN
networks. Industrial Electronics, IEEE Transactions on, 99, 2009.

[6] M. Barranco, J. Proenza, G. Rodriguez-Navas, and L. Almeida. An
active star topology for improving fault confinement in CAN networks.
Industrial Electronics, IEEE Transactions on, 2, 2, 78–85, 2006.

[7] D. Berbecaru, L. Albertalli, and A. Lioy. The ForwardDiffSig scheme
for multicast authentication. IEEE/ACM Transactions on Networking,
18:1855–1868, December 2010.

[8] F. Bergadano, D. Cavagnino, and B. Crispo. Individual authentication
in multiparty communications. Computers & Security, 21(8):719–735,
2002.

[9] G. Cena, and A. Valenzano. An improved CAN fieldbus for industrial
applications. Industrial Electronics, IEEE Transactions on, vol.44, no.4,
553–564, 1997.

[10] G. Cena, and A. Valenzano. FastCAN: a high-performance enhanced
CAN-like network. Industrial Electronics, IEEE Transactions on, vol.47,
no.4, pp.951-963, 2000.

[11] Y. Challal, A. Bouabdallah, and H. Bettahar. H2A: Hybrid hash-chaining
scheme for adaptive multicast source authentication of media-streaming.
Computers & Security, 24(1):57 – 68, 2005.

[12] J. Charzinski. Performance of the error detection mechanisms in CAN.
In Proceedings of the 1st International CAN Conference, pages 20–29,
1994.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Compre-
hensive experimental analyses of automotive attack surfaces. In USENIX

Security 2011, 2011.

[14] M. Cheminod, A. Pironti, R. Sisto, Formal Vulnerability Analysis of
a Security System for Remote Fieldbus Access, Industrial Informatics,

IEEE Transactions on , vol.7, no.1, pp.30-40, Feb. 2011.

[15] D. Dzung, M. Naedele, T. P. Von Hoff, and M. Crevatin. Security
for Industrial Communication Systems. Proceedings of the IEEE,
93(6):1152–1177, Feb. 2005.

[16] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet dossier. Technical
report, Symantec, 2011.

[17] W. Granzer, F. Praus, W. Kastner. Security in Building Automation
Systems Industrial Electronics, IEEE Transactions on , vol.57, no.11,
pp.3622-3630, Nov. 2010.

[18] B. Groza and P.-S. Murvay. Higher layer authentication for broadcast in
controller area networks. In International Conference on Security and

Cryptography (SECRYPT), 2011.
[19] H. Hartenstein and K. Laberteaux. VANET Vehicular Applications and

Inter-Networking Technologies. Wiley, 2009.
[20] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In Security

and Privacy (SP), 2010 IEEE Symposium on, pages 447 –462, May
2010.

[21] L. Lamport. Password authentication with insecure communication.
Commun. ACM, 24:770–772, November 1981.

[22] K. Lemke, C. Paar, and M. Wolf. Embedded Security in Cars Securing

Current and Future Automotive IT Applications. Springer Verlag, 2006.
[23] D. Liu and P. Ning. Efficient distribution of key chain commitments

for broadcast authentication in distributed sensor networks. In Proc. of

the 10th Annual Network and Distributed System Security Symposium,
pages 263–276, 2003.

[24] D. Liu and P. Ning. Multilevel µtesla: Broadcast authentication for
distributed sensor networks. ACM Transactions on Embed. Comput.

Syst., 3:800–836, November 2004.
[25] P. Marti, A. Camacho, M. Velasco, M. El Mongi Ben Gaid, Runtime

Allocation of Optional Control Jobs to a Set of CAN-Based Networked
Control Systems, Industrial Informatics, IEEE Transactions on, vol.6,
no.4, pp.503-520, Nov. 2010

[26] R. C. Merkle. A digital signature based on a conventional encryption
function. In A Conference on the Theory and Applications of Crypto-

graphic Techniques on Advances in Cryptology, CRYPTO ’87, pages
369–378, London, UK, 1988. Springer-Verlag.

[27] R. Mitchell. Tutorial: Introducing the XGATE Module to Consumer and

Industrial Application Developers, March 2006. Freescale, 2004.
[28] J. Munoz-Castaner, R. Asorey-Cacheda, F.J. Gil-Castineira,

F.J. Gonzalez-Castano, and P.S. Rodriguez-Hernandez. A review
of aeronautical electronics and its parallelism with automotive
electronics. In Industrial Electronics, IEEE Transactions on, vol.58,
no.7, pp.3090-3100, Jul. 2011.

[29] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure
source authentication for multicast. In Network and Distributed System

Security Symposium, NDSS ’01, pages 35–46, 2001.
[30] A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Spins: Security protocols

for sensor networks. In Seventh Annual ACM International Conference

on Mobile Computing and Networks (MobiCom 2001), pages 189–199,
2001.

[31] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient authentica-
tion and signing of multicast streams over lossy channels. In IEEE

Symposium on Security and Privacy, pages 56–73, 2000.
[32] Robert BOSCH GmbH. CAN Specification Version 2.0., 1991.
[33] ECRYPT II, Yearly Report on Algorithms and Keysizes (2009-2010),

Revision 1.0, 2011.
[34] International Organization for Standardization. ISO 11898-1. Road

vehicles - Controller area network (CAN) - Part 1: Controller area

network data link layer and medium access control, 2003.
[35] International Organization for Standardization. ISO 11898-4. Road

vehicles - Controller area network (CAN) - Part 4: Time triggered

communication, 2004.

