
Examining the Use of Neural Networks
for Intrusion Detection in Controller Area Networks

Camil Jichici, Bogdan Groza, and Pal-Stefan Murvay

Faculty of Automatics and Computers,
Politehnica University of Timisoara, Romania

Email: jichicicamil93@gmail.com, bogdan.groza@aut.upt.ro, pal-stefan.murvay@aut.upt.ro

Abstract. In the light of the recently reported attacks, in-vehicle security has
become a major concern. Intrusion detection systems, common in computer net-
works, have been recently proposed for the in-vehicle buses as well. In this work
we examine the performance of neural networks in detecting intrusions on the
CAN bus. For the experiments we use a CAN trace that is extracted from a CA-
Noe simulation for the commercial vehicle bus J1939 as well as a publicly avail-
able CAN dataset. Our results show good performance in detecting both replay
and injection attacks, the former being harder to detect to their obvious similarity
with the regular CAN frames. Nonetheless we discuss possibilities for integrating
such detection mechanisms on automotive-grade embedded devices. The exper-
imental results show that embedding the neural-network based intrusion detec-
tion mechanism on automotive-grade controllers is quite challenging due to large
memory requirements and computational time. This suggests that dedicated hard-
ware may be required for deploying such solutions in real-world vehicles.

Keywords: CAN bus · vehicle security · intrusion detection · neural networks

1 Introduction and Related Work

Contemporary vehicles are easy targets in front of well motivated adversaries, this was
well proved by recent research. The main cause for this vulnerability is the inherent
lack of security on Controller Area Network (CAN) which was designed decades ago
without adversaries in mind.

Recently, a strong body of research has been focusing on the use of cryptographic
authentication for the CAN bus. This includes the use of regular cryptographic message
authentication codes [5], [6], [19], [4] but goes as far as using the physical layer to dis-
card forged frames [10] or hide authentication bits in regular frames [24]. Attention is
also payed to efficient allocation of signals in each frame [12]. Other works account for
the physical layer in order to hide authentication bits within regular CAN bits or distin-
guish between nodes based on physical signal characteristics [15], [3], [2]. Other lines
of work have been focusing in using characteristics of the physical layer to securely
share a cryptographic key [7], [14].

The design of intrusion detection mechanisms for CAN is an even more recent pre-
occupation. The use of entropy characteristics of the frames was explored by [16] and



Fig. 1. Targeted scenario

[13]. In [11], the authors propose an Intrusion Detection System (IDS) based on remote
frames. The idea proposed by the authors is to send a remote frame and then stores the
offset and time intervals between the remote frame and the response data frame. The
experimental results demonstrated that offsets exists between normal frames and attack
frames [11]. In [20] the authors show that the timestamps of messages can be used to
detect attacks. Specialized detection sensors are used in [17]. Hardware measurements
such as clock-shews [1] voltage thresholds or signal characteristics [3], [15] may also
set the stage for intrusion detection.

In [8] and [9] the authors propose an IDS based on deep neural networks. They
use as input only the data-field of the CAN packet to detect the intrusion, which may
not be sufficient to detect replay attacks (since replayed CAN frames are identical to
genuine frames). In our proposal we use the timestamp of the CAN packet to circumvent
this problem. A recurrent neural network is presented in [22]. The authors use two
networks, one which is trained with the data packet and one which is trained with the
CAN bus ID. A Markov Model is used in [18]. Finite-state automatons are used in [21]
and multivariate time series in [23].

2 Background and Tools

In this section we discuss the adversary model then proceed to some background on
neural networks and the tools that we use for evaluation.

2.1 Adversary Model

The setup that we address is depicted in Figure 1. Here an adversary connects over the
On-Board Diagnostics (OBD), via some compromised device and injects frames on the
bus. Our work considers two types of attacks which are modelled on the CANoe trace:

1. Injection of random data, an attack in which a the malicious CAN frame is injected
with the same identifier as a genuine frame but has data field that is randomly
generated. The timestamp of the injected frame is a random time value between the



timestamps of two regular CAN frames between which the injection takes place
(we consider that this mimics a real-world attack scenario). The injection takes
place at a random location in the regular trace. When analyzing traces for an attack
on individual IDs, the injection occurs at random between two regular frames of the
same ID. When analyzing the full trace, we consider that injection is again random,
no later than few dozen frames from the genuine frame.

2. Replay of regular CAN frames, an attack in which the adversarial CAN frame
has the same identifier and content. The frame has a random timestamp since it
also mimics a real-world attack in which we assume that an adversary is replay-
ing frames at random points in time. The injection is done at random locations,
identical to the case of injection with random data.

Our adversary model is consistent with models from related work [11] where the
authors define replay attacks and fuzzy attacks which are identical to our injections
of random data. Additionally, in [11] the authors consider DoS attack by injecting the
highest priority ID on the bus, i.e., 0x000h, but this attack is easy to detect since the ID
does not occur in normal runs. Consequently we neglect this behaviours since detection
would be trivial.

2.2 Neural Network Tools and Architecture

In our experiments we use both the Neural Network Toolbox made available by Matlab
which is industry standard as well as an independent C++ implementation. The reason
for using both these implementation is that the neural network toolset from Matlab is
widely recognized for its performance and functionalities, however, for a microcon-
troller implementation an open-source C++ code is preferred. For this reason, the main
results from the experimental section are done with Matlab but we also verified that
similar results are obtain with the independent C++ code1 which we also benchmark in
the experimental section.

The Matlab toolbox provides plenty of algorithms and methods to solve classifica-
tion problems. In particular, we used the trainscg, i.e., scaled conjugate gradient back-
propagation, algorithm for training. The weights and bias values are updated by the al-
gorithm using the scaled conjugate gradient method. The transfer function used between
our layers is the hyperbolic tangent sigmoid transfer function tansig which returns a
value in the range [−1, 1]. This function is recommended by the Matlab documentation
as it offers good trade-offs where speed is important. The C++ implementation also uses
the back-propagation algorithm and the a sigmoid function for activation.

For training and validation of the results, the dataset which we used is split in three
parts:

1. training data (TD), which is the data used for training the network, i.e., updating
the weights of the network,

2. validation data (VD), which is the data used to test how the neural network works
with new data (this input is run at the end of each epoch),

1 https://takinginitiative.wordpress.com/2008/04/23/basic-neural-network-tutorial-c-
implementation-and-source-code/



3. test data (TsD) is used after the training phase (when the stop conditions are reached)
and the correctness results are based on the output for this type of data.

We remark that in the C++ implementation the validation data is referred as gener-
alization data and the test data is referred as validation data. This is simply a naming
convention since the role of the sets is obvious from the implementation.

An epoch sums over the running time of the entire training data set plus the general-
ization set. The neural network runs continuously until the stop conditions are met. We
now discuss this conditions in Matlab. Since the training was in the order of minutes
or less and the training stage is an off-line process which does not require a real-time
response, we leave the maximum amount of time, one of the stop conditions for the
training, set to ∞ which is the default. This allows stopping on one of the following
conditions: i) the maximum epoch reached (set to 1000), ii) the performance goal is
reached (set to 0), iii) the performance gradient falls below the minimum gradient (set
to 1e-06) or iv) the validation performance has consecutively increased more than 6
times.

The independent C++ implementation had similar stopping conditions. For exam-
ple, if the training set accuracy and generalization set accuracy is less than the desired
accuracy, the network will run until the maximum epochs is reached. Otherwise, the
training set accuracy (TSA) can be used as stop condition and this represents the num-
ber of CAN packets that are correctly classified, i.e.,

TSA = 100

(
1− NIC

NT

)
where NIC is the number of incorrect results and NT the total number of CAN

frames from the training set. Finally, another stop condition is the generalization set
accuracy (GSA) which is identical to TSA, but computed on the generalization dataset.

The structure of the neural network consists in an input layer, a hidden layer and the
output layer. These are shown in Figure 2. The neural network input accounts for the
data field, the identifier (29 bits, for extended CAN frame) and also the delay between
consecutive timestamps of the same ID (∆t). Mathematically the data input vector I ∈
{0, 1}105 is described as: I =

{
b0, b1, b2, ...b104

}
where bits b0...b11 represent the delay

∆t, bits b12...b75 the 64-bit data field and bits b76...b104 the 29-bit identifier. The output
O ∈ {0, 1} is given as: O =

{
b0
}

where

b0 =

{
1, represents an attack frame
0, represents a regular frame

3 Experimental Results

In this section we first discuss metrics for performance evaluation then we proceed
to concrete results on detection accuracy. Finally, we present results on computational
performance on automotive-grade microcontrollers.



Fig. 2. Structure of the neural network

3.1 Metrics for Evaluating the Detection Rate

We evaluate success rate of the detection mechanism based on the usual four param-
eters: true positives (TP), i.e., the number of frames that are correctly reported as in-
trusions, true negatives (TN), i.e., the number of frames that are correctly reported as
genuine, false positives (FP), i.e., the number of frames that are incorrectly reported as
intrusions, and false negative (FN), i.e., the number of frames that are incorrectly re-
ported as genuine. Based on these, we calculate the following: the sensitivity or the true
positive rate TPR = TP/(TP+FN ), the false negative rate FNR = FN /(TP+FN ),
the specificity or the true negative rate TNR = TN /(TN +FP) and the fall-out or the
false positive rate FPR = FP/(FP + TN ).

In addition to these, the validation set MSE (Mean Squared Error ) is also used. This
represents the average of the sum of the squared errors for each pattern in the validation
set:

MSE =

∑n
i=0(DesiredValue −ActualValue)2

n
,

where n is the number of CAN frames from validation set.

3.2 Results on Detection Accuracy

We use a CANoe trace from a J1939 simulation. We compute the detection rates on
portions of traces containing all packets with a particular CAN identifier. We consider
three rates of injection: 5%, 10% and 20% of attack frames in the trace. For each injec-
tion rate we have five cases of splitting the data for training (TD), validation (VD) and
testing (TsD). These are shown in Table 1.

To begin with, we have conducted experiments on the real-world CAN bus data
made public by the authors in [11]. The dataset includes traces for both regular net-
work traffic and for the case of adversarial interventions. Unfortunately, for the later



Table 1. The five cases in which we split the dataset

I 60% TD 20% VD 20% TsD
II 40% TD 20% VD 40% TsD
III 20% TD 20% VD 60% TsD
IV 10% TD 10% VD 80% TsD
V 5% TD 5% VD 90% TsD

case, the traces do not have a mark to separate between injected frames and genuine
frames. Consequently, we have only considered traces for fuzzy attacks and assumed
that randomized frames are injections while the rest of the frames are genuine. The re-
sults, presented in Table 2, were excellent at almost 100% detection accuracy, but this
is mostly due to the simplicity of the attack trace, e.g., the attack is carried on a single
ID with low entropy. In what follows we complicate these experiments to test the limits
of the neural network based detection.

Table 2. Experimental results - efficiency rates regarding fuzzy attacks dataset

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

N/A I 1 7.07e-07 9.6381e-07 24 2454 5586 2 0
99.92% 100% 0.08% 0%

N/A II 1 5.21e-07 7.5294e-04 31 5277 10806 2 0
99.96% 100% 0.04% 0%

N/A III 1 8.22e-07 7.4193e-07 28 7860 16266 2 0
99.97% 100% 0.03% 0%

N/A IV 1 6.08e-07 1.4023e-06 27 10462 21707 2 0
99.98% 100% 0.02% 0%

N/A V 1 6.49e-07 1.4732e-06 26 11827 24363 2 0
99.98% 100% 0.02% 0%

Results on single ID with low vs. high entropy. We now discuss detection rate on
monitoring a single ID from our CANoe J1939 trace. Monitoring for a single ID is
relevant as a baseline since it is expected that extending detection to all the IDs from
the trace will require a larger neural network which in turn requires more computational
power and storage space. Also, we note that in the trace that we use some of the IDs
carry entropy that is close to 0, i.e., almost constant data-fields, while other frames have
12-13 bits of entropy. We present results for both these situations in Tables 3 and 4
for injections with random data. For replay attacks the results are available in Tables 5
and 6. Extended results on this dataset are deferred for the Appendix of this work in
Tables 15, 16, 17 and 18. In case of injections with random data, for the higher entropy
ID there is a slight increase in the false-negative rate, but detection rate is still close
to 100% percents. For replay attacks, somewhat poorer results were obtained for the



low-entropy ID. But the true negative rate stays at 100% while the true positive rate
may occasionally drop to around 70%.

Table 3. Result on injections with random data over a low-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

20% I 0 8.79e-07 1.0677e-07 29 7519 1518 0 0
100% 100% 0% 0%

20% II 0 9.23e-07 5.7362e-07 27 15079 2995 0 0
100% 100% 0% 0%

20% III 1 7.21e-07 1.7136e-06 26 22645 4466 0 0
100% 100% 0% 0%

20% IV 0 7.34e-07 1.1782e-06 31 30152 5996 0 0
100% 100% 0% 0%

20% V 1 8.12e-07 7.9371e-05 25 33871 6794 0 1
100% 99.99% 0% 0.01%

Table 4. Result on injections with random data over a high-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

20% I 1 9.63e-07 3.7269e-07 28 7562 1475 0 0
100% 100% 0% 0%

20% II 1 9.57e-07 7.5004e-06 28 15093 2981 0 0
100% 100% 0% 0%

20% III 1 6.32e-07 3.281e-05 28 22645 4457 0 0
100% 100% 0% 0%

20% IV 0 8.27e-07 3.8664e-05 28 30161 5987 0 0
100% 100% 0% 0%

20% V 0 7.31e-07 5.3963e-06 29 33890 6774 0 2
100% 99.97% 0% 0.03%

Results on full trace. The results are now extended for attacks over the full trace as
presented in Tables 7 and 8. In this case the attacks are carried by selecting a message
at random from the trace and re-injecting it at some random point no later than a few
dozen frames afterward. The data-field of the injected frame is either identical to the
genuine one (replay attacks) or replaced by random data. The results start to degrade
a bit as false-positives start to appear. Still, these stay at several percents and only in
case of 20% replays they increase to 13.83%. A bigger concern are the false negatives
which also increase at almost 43.58% in case of 5% replays. This may be due to the low
density of the training set since the rate drops at 17.64% as soon as the injection rate is
increased at 20%.



Table 5. Result on replay attacks over a low-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

20% I 6 1.10e-03 2.9128e-04 26 7530 1507 0 0
100% 100% 0% 0%

20% II 6 2.32e-03 6.1636e-06 37 15086 2909 0 79
100% 97.36% 0% 2.64%

20% III 6 6.64e-04 6.0327e-03 33 22601 4297 0 213
100% 95.28% 0% 4.72%

20% IV 6 2.74e-03 4.3834e-03 16 30081 5639 0 428
100% 92.95% 0% 7.05%

20% V 6 4.23e-03 2.5314e-02 13 33886 5855 0 925
100% 86.36% 0% 13.64%

Table 6. Result on replay attacks over a high-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

20% I 6 9.61e-07 2.0248e-06 43 7557 1449 0 31
100% 97.91% 0% 2.09%

20% II 1 6.70e-07 3.7639e-03 45 15051 2992 0 31
100% 98.97% 0% 1.03%

20% III 6 6.64e-04 6.0327e-03 33 22592 4431 0 88
100% 98.05% 0% 1.95%

20% IV 1 8.85e-07 4.2954e-05 43 30147 5936 0 65
100% 98.92% 0% 1.08%

20% V 0 5.92e-07 1.8005e-05 42 33886 6585 0 195
100% 97.12% 0% 2.88%

Table 7. Results on injections with random over the full trace

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 1 9.15e-07 9.4955e-04 47 79842 3833 257 68
99.68% 98.26% 0.32% 1.74%

5% V 1 7.51e-07 8.2342e-04 50 89782 4368 269 81
99.70% 98.18% 0.3% 1.82%

20% IV 0 6.07e-07 1.6087e-03 48 80137 15552 288 23
99.64% 99.85% 0.36% 0.15%

20% V 1 8.34e-07 3.6169e-04 41 89850 17700 347 103
99.62% 99.42% 0.38% 0.58%



Table 8. Results on replay attacks over the full trace

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 1.41e-02 1.8857e-02 213 78749 2445 1305 1501
98.37% 61.96% 1.63% 38.04%

5% V 6 3.47e-03 2.1721e-02 167 88401 2526 1622 1951
98.20% 56.42% 1.80% 43.58%

20% IV 6 2.01e-02 3.8511e-02 150 69220 12909 11106 2765
86.17% 83.26% 13.83% 17.64%

20% V 6 9.12e-03 3.7179e-02 158 80157 14430 10001 3412
88.91% 80.88% 11.09% 19.12%

Results on full trace with reduced network size. Reducing the network size is manda-
tory since the computational and memory load may be too high for automotive-grade
controllers as we discuss in the next section. Tables 9 and 10 hold results for injections
with random data and replays over the full trace with a network that has a hidden layer
reduced to 1/4. Tables 11 and 12 hold the same results for a network with a hidden layer
reduced to 1/16. As expected, the performance does degrade with a reduce network size.
Still, the results are satisfactory at both 1/4 and 1/16 size of the hidden layer. Again the
most significant degradation is for the false-negatives in case of replay attacks. This im-
proves as soon as replays are increased to 20% suggesting the need for a bigger training
set.

Table 9. Results on injections with random data over the full trace at 1/4 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 0 9.35e-07 4.9171e-04 45 79842 3846 257 67
99.68% 98.28% 0.32% 1.72%

5% V 1 4.60e-07 2.0366e-03 46 89665 4275 386 174
99.57% 96.09% 0.43% 3.91%

20% IV 6 5.42e-07 7.3191e-04 52 80153 15462 272 113
99.66% 99.27% 0.34% 0.73%

20% V 1 9.90e-07 1.0166e-03 50 89471 17695 726 108
99.20% 99.39% 0.80% 0.61%

Results on a longer trace. Finally, we experiment with a longer trace of 500,000
frames. The objective was to determine if the longer trace will increase the false-
positives rate. This however appears to remain stable and correlate only with the injec-
tion rate and learning time which was already obvious from the previous experiments.
For brevity, the results are moved to Appendix A in Tables 19, 20, 21 for injections with
random data and Table 22 for replays.



Table 10. Results on replay attacks over the full trace at 1/4 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 8.93e-03 1.8363e-02 281 78719 2476 1335 1470
98.33% 62.75% 1.67% 37.25%

5% V 6 1.07e-02 1.8056e-02 214 89050 2711 973 1766
98.92% 60.55% 1.08% 39.45%

20% IV 6 1.82e-02 3.4832e-02 306 72010 12742 8316 2932
89.65% 81.29% 10.35% 18.71%

20% V 6 1.09e-02 3.4798e-02 154 84019 14046 6139 3796
93.19% 78.72% 6.81% 21.28%

Table 11. Results on injections with random data over the full trace at 1/16 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 1.79e-04 1.1984e-03 53 79818 3757 281 144
99.65% 96.31% 0.35% 3.69%

5% V 6 3.15e-05 1.6704e-03 39 89444 4229 607 220
99.33% 95.06% 0.67% 4.94%

20% IV 6 4.0e-05 1.1148e-03 42 80007 15401 418 174
99.48% 98.88% 0.52% 1.12%

20% V 6 7.50e-05 2.3672e-03 54 88763 17439 1434 364
98.41% 97.96% 1.59% 2.04%

Table 12. Results on replay attacks over the full trace at 1/16 hidden layer size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 7.86e-03 2.8314e-02 125 79528 1791 526 2155
99.34% 45.39% 0.66% 54.61%

5% V 6 4.45e-03 2.6876e-02 113 88184 1871 1839 2606
97.96% 41.79% 2.04% 58.21%

20% IV 6 1.35e-02 4.1603e-02 189 63747 12704 16579 2970
79.36% 81.05% 20.64% 18.95%

20% V 6 1.69e-02 4.5909e-02 202 74453 13068 15705 4774
82.58% 73.24% 17.42% 26.76%



3.3 Computational Results

The successful deployment of an IDS in real life vehicular applications depends on the
computational constraints of the embedded platforms employed in its implementation.
We examine the computational performance of our proposal by measuring the runtime
of the detection algorithm on three automotive grade platforms. The first, representing
the low-performance device group, is a NXP S12XF512 microcontroller. From the high
performance sector we employed an Infineon AURIX TC297 microcontroller and a
Renesas RH850/E1x. The S12XF chip comes with 32KB of RAM, 512KB of Flash
and a 16 bit main core (a coprocessor is also available for reducing peripheral interrupt
load) that can provide a top operating frequency of 50MHz. On the other hand, the
AURIX platform is equipped with 728KB of RAM, 8MB of Flash and three 32-bit
cores running at up to 300MHz. The Renesas platform which we evaluated using a
dedicated simulator offers 352KB of RAM and 4MB of Flash and two 32 bit cores
clocked at up to 320MHz.

Our detection algorithm was implemented to run on a single-core using training
data that is stored in the Flash memory. We assume that the weights are computed off-
line and already available as a result of an initial training step. Three sets of weights
were used in our tests corresponding to the network with a full size hidden layer, a
hidden layer reduced to 1/4 and 1/16 respectively. Tests were made using set of weights
stored both as single and double precision floating point values. Tables 13 and 14 holds
the run-times measured for the detection algorithm in the analysed scenarios. We were
unable to obtain results for running the detection algorithm on the S12XF platform with
the full size hidden layer due to limitation in the employed compiler.

Table 13. Computational results on single precision floats

Platform Full hidden layer 1/4 hidden layer 1/16 hidden layer

S12XF512 n/a 52.3ms 13.22ms

TC297 3.904ms 899µs 237.5µs

RH850/E1x-FCC1 2.697ms 667.1µs 157.6µs

Table 14. Computational results on double precision floats

Platform Full hidden layer 1/4 hidden layer 1/16 hidden layer

S12XF512 n/a 110.5ms 25.76ms

TC297 15.26ms 3.744ms 822µs

RH850/E1x-FCC1 2.680ms 671.3µs 162.73µs



As expected, the low-end platform bring on a considerable performance bottleneck
making the deployment of the detection algorithm only feasible for a reduced neural
network size and a CAN network with few nodes sending messages with high cycle
times (i.e. greater than 100ms). High performance platforms prove to be more suit-
able for implementing the detection algorithm. However, using the full version of the
proposed neural network may still be problematic for handling CAN traffic with cycle
times in the order of 10s of milliseconds.

4 Conclusion

Neural networks prove to be effective in detecting intrusions on CAN but limitations
exists. As expected, the results are split between the two types of attacks replay vs.
modification attacks. For replay attacks detection rate is lower because injected frames
are identical to genuine frames. In this case the time-stamp is the only indicator. In
case of injections with random data, the attack is easily detected by the network. From
the detection point of view, the results are satisfactory and neural networks looks like
a promising mechanism for detecting intrusions on the CAN bus. The more signifi-
cant problem comes from computational and storage requirements as neural networks
do not appear suitable for low-end automotive-grade controllers. High-end controllers
may cope with neural networks of reduced size, but computational demands are still
high. Thus detection may not be always carried locally on each node, unless dedicated
hardware is added. The solution may be to rely on gateways equipped with stronger
cores that can filter traffic in real time. Such a solution may be subject of future investi-
gations for us. Nonetheless, we plan as future work extending this evaluation over more
complex real-world in-vehicle traces from CAN, CAN-FD and FlexRay.

Acknowledgement. This work was supported by a grant of Ministry of Research
and Inovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-1317, within
PNCDI III (2018-2020).

References

1. K.-T. Cho and K. G. Shin. Fingerprinting Electronic Control Units for Vehicle Intrusion
Detection. In 25th USENIX Security Symposium, 2016.

2. W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee. Identifying ECUs Using
Inimitable Characteristics of Signals in Controller Area Networks. IEEE Trans. Vehicular
Technology, 67(6):4757–4770, 2018.

3. W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee. VoltageIDS: Low-Level Communi-
cation Characteristics for Automotive Intrusion Detection System. IEEE Transactions on
Information Forensics and Security, 2018.

4. B. Groza, P.-S. Murvay, A. Van Herrewege, and I. Verbauwhede. LiBrA-CAN: a Lightweight
Broadcast Authentication protocol for Controller Area Networks. In 11th International Con-
ference on Cryptology and Network Security, CANS 2012, Springer-Verlag, LNCS, 2012.

5. B. Groza and S. Murvay. Efficient protocols for secure broadcast in controller area networks.
IEEE Transactions on Industrial Informatics, 9(4):2034–2042, 2013.



6. O. Hartkopp, C. Reuber, and R. Schilling. MaCAN-message authenticated CAN. In 10th
Int. Conf. on Embedded Security in Cars (ESCAR 2012), 2012.

7. S. Jain and J. Guajardo. Physical Layer Group Key Agreement for Automotive Controller
Area Networks. In Conference on Cryptographic Hardware and Embedded Systems, 2016.

8. M.-J. Kang and J.-W. Kang. Intrusion detection system using deep neural network for in-
vehicle network security. PloS one, 11(6):e0155781, 2016.

9. M.-J. Kang and J.-W. Kang. A novel intrusion detection method using deep neural network
for in-vehicle network security. In Vehicular Technology Conference (VTC Spring), 2016
IEEE 83rd, pages 1–5. IEEE, 2016.

10. R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S. Horihata. CaCAN -
Centralized Authentication System in CAN (Controller Area Network). In 14th Int. Conf. on
Embedded Security in Cars (ESCAR 2014), 2014.

11. H. Lee, S. H. Jeong, and H. K. Kim. Otids: A novel intrusion detection system for in-vehicle
network by using remote frame. Privacy, Security and Trust (PST) 2017, 2017.

12. C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli. Security-aware modeling and efficient
mapping for CAN-based real-time distributed automotive systems. IEEE Embedded Systems
Letters, 7(1):11–14, 2015.

13. M. Marchetti, D. Stabili, A. Guido, and M. Colajanni. Evaluation of anomaly detection for
in-vehicle networks through information-theoretic algorithms. In Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI), pages 1–6. IEEE, 2016.

14. A. Mueller and T. Lothspeich. Plug-and-secure communication for CAN. CAN Newsletter,
pages 10–14, 2015.

15. P.-S. Murvay and B. Groza. Source identification using signal characteristics in controller
area networks. IEEE Signal Processing Letters, 21(4):395–399, 2014.

16. M. Müter and N. Asaj. Entropy-based anomaly detection for in-vehicle networks. In Intelli-
gent Vehicles Symposium (IV), 2011 IEEE, pages 1110–1115. IEEE, 2011.

17. M. Müter, A. Groll, and F. C. Freiling. A structured approach to anomaly detection for in-
vehicle networks. In Information Assurance and Security (IAS), 2010 Sixth International
Conference on, pages 92–98. IEEE, 2010.

18. S. N. Narayanan, S. Mittal, and A. Joshi. OBD SecureAlert: An Anomaly Detection System
for Vehicles. In Smart Computing (SMARTCOMP), 2016 IEEE International Conference
on, pages 1–6. IEEE, 2016.

19. A.-I. Radu and F. D. Garcia. LeiA: a lightweight authentication protocol for CAN. In
European Symposium on Research in Computer Security, pages 283–300. Springer, 2016.

20. H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based on the analysis
of time intervals of CAN messages for in-vehicle network. In 2016 international conference
on information networking (ICOIN), pages 63–68. IEEE, 2016.

21. I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi. A language-based in-
trusion detection approach for automotive embedded networks. International Journal of
Embedded Systems, 10(1):1–12, 2018.

22. A. Taylor, S. Leblanc, and N. Japkowicz. Anomaly detection in automobile control net-
work data with long short-term memory networks. In Data Science and Advanced Analytics
(DSAA), 2016 IEEE International Conference on, pages 130–139. IEEE, 2016.

23. A. Theissler. Detecting known and unknown faults in automotive systems using ensemble-
based anomaly detection. Knowledge-Based Systems, 123:163–173, 2017.

24. A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-a simple, backward compat-
ible broadcast authentication protocol for CAN bus. In ECRYPT Workshop on Lightweight
Cryptography, volume 2011, 2011.



Appendix - Results on Various Injection Rates over a Single ID and
a Longer Trace of 500,000 Packets

Table 15. Result on injections with random data over a low-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% I 0 7.88e-07 9.4077e-07 28 7537 370 0 0
100% 100% 0% 0%

5% II 0 9.36e-07 7.0086e-06 26 15078 736 0 0
100% 100% 0% 0%

5% III 1 7.64e-07 1.6502e-05 26 22603 1119 0 0
100% 100% 0% 0%

5% IV 1 9.78e-07 6.7137e-05 25 30113 1511 0 5
100% 99.67% 0% 0.33%

5% V 1 6.33e-07 8.5875e-05 25 33892 1683 0 8
100% 99.53% 0% 0.47%

10% I 6 7.95e-07 1.2784e-07 20 7562 721 0 0
100% 100% 0% 0%

10% II 0 7.17e-07 1.3031e-07 23 15073 1494 0 0
100% 100% 0% 0%

10% III 1 8.39e-07 1.0475e-06 27 22603 2248 0 0
100% 100% 0% 0%

10% IV 1 6.92e-07 2.5506e-05 25 30133 3002 0 0
100% 100% 0% 0%

10% V 1 7.53e-07 2.7009e-05 27 33892 3385 0 0
100% 100% 0% 0%



Table 16. Result on injections with random data over a high-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% I 0 9.73e-07 1.7407e-06 29 7535 372 0 0
100% 100% 0% 0%

5% II 0 8.36e-07 1.4209e-05 26 15068 746 0 0
100% 100% 0% 0%

5% III 1 6.65e-07 2.1e-05 29 22584 1136 0 2
100% 99.82% 0% 0.18%

5% IV 0 8.58e-07 1.6136e-04 27 30126 1498 0 5
100% 99.67% 0% 0.33%

5% V 0 6.57e-07 1.0028e-03 25 33898 1665 0 20
100% 98.81% 0% 1.19%

10% I 1 7.10e-07 1.2579e-06 26 7518 765 0 0
100% 100% 0% 0%

10% II 0 7.63e-07 2.8341e-06 25 15057 1510 0 0
100% 100% 0% 0%

10% III 1 8.85e-07 1.556e-05 20 22615 2234 0 2
100% 99.91% 0% 0.09%

10% IV 1 6.04e-07 7.2312e-07 17 30151 2983 0 1
100% 99.97% 0% 0.03%

10% V 0 7.23e-07 9.4239e-05 27 33884 3390 0 3
100% 99.91% 0% 0.09%

Table 17. Result on replay attacks over a low-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% I 6 1.59e-03 6.2598e-04 13 7561 346 0 0
100% 100% 0% 0%

5% II 6 5.11e-04 3.2658e-04 27 15082 693 0 39
100% 94.67% 0% 5.33%

5% III 6 7.18e-04 1.1147e-03 19 22618 1031 0 73
100% 93.39% 0% 6.61%

5% IV 6 5.87e-03 4.7389e-03 11 30132 1375 0 122
100% 91.85% 0% 8.15%

5% V 6 1.18e-03 1.9846e-02 14 33894 1308 0 381
100% 77.44% 0% 22.26%

10% I 6 4.98e-04 4.4403e-05 25 7549 734 0 0
100% 100% 0% 0%

10% II 6 6.35e-03 1.0116e-03 24 15081 1455 0 31
100% 97.91% 0% 2.09%

10% III 6 1.86e-03 7.7252e-04 16 22608 2126 0 117
100% 94.78% 0% 5.22%

10% IV 6 4.99e-03 8.5069e-03 13 30120 2803 0 212
100% 92.97% 0% 7.03%

10% V 6 1.69e-02 1.9815e-02 12 33882 2638 0 757
100% 77.70% 0% 22.30%



Table 18. Result on replay attacks over a high-entropy ID

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% I 0 9.62e-07 4.106e-08 42 7519 388 0 0
100% 100% 0% 0%

5% II 0 8.82e-07 6.7873e-08 47 15072 742 0 0
100% 100% 0% 0%

5% III 6 5.35e-05 4.8317e-05 43 22568 1154 0 0
100% 100% 0% 0%

5% IV 0 8.44e-07 8.9661e-08 53 30116 1458 0 55
100% 96.36% 0% 3.64%

5% V 6 1.35e-03 1.1116e-02 27 33875 1486 0 222
100% 87% 0% 13%

10% I 0 7.19e-07 4.7954e-08 51 7536 747 0 0
100% 100% 0% 0%

10% II 6 5.74e-04 1.8338-04 27 15068 1469 0 30
100% 98% 0% 2%

10% III 0 8.57e-07 4.0524e-08 48 22608 2126 0 117
100% 94.96% 0% 5.04%

10% IV 0 9.36e-07 1.5564e-08 68 30116 2831 0 188
100% 93.77% 0% 6.23%

10% V 6 3.33e-03 7.7698e-03 13 33877 3124 0 276
100% 91.88% 0% 8.12%

Table 19. Results on injections with random data over a longer trace of 500,000 frames

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 1 9.04e-07 3.4937e-05 95 400193 19757 0 50
100% 99.75% 0% 0.25%

5% V 6 2.04e-05 6.4378e-03 53 450013 22302 93 92
99.98% 99.59% 0.02% 0.41%

20% IV 1 8.20e-07 6.1195e-05 58 401825 78159 0 16
100% 99.98% 0% 0.02%

20% V 0 7.50e-07 5.5172e-03 52 450822 89024 95 59
99.98% 99.93% 0.02% 0.07%

Table 20. Results on injections with random data over a longer trace of 500,000 frames and 1/4
network size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 1 9.04e-07 1.0093e-04 51 400193 19708 0 99
100% 99.5% 0% 0.5%

5% V 6 2.19e-04 6.357e-03 38 450014 22023 92 371
99.98% 98.34% 0.02% 1.66%

20% IV 1 8.35e-07 1.1475e-04 66 401825 78106 0 69
100% 99.91% 0% 0.09%

20% V 1 6.39e-07 5.5222e-03 50 450822 89007 95 76
99.98% 99.91% 0.02% 0.09%



Table 21. Results on injections with random data over a longer trace of 500,000 frames and 1/16
network size

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 6.24e-05 1.3187e-04 62 400193 19677 0 130
100% 99.34% 0% 0.66%

5% V 6 1.41e-06 6.7372e-03 74 450013 22082 93 312
99.98% 98.61% 0.02% 1.39%

20% IV 6 1.28e-04 5.2868e-04 96 401825 77864 0 311
100% 99.60% 0% 0.4%

20% V 6 7.85e-05 5.0288e-03 63 450836 88707 81 376
99.98% 99.58% 0.02% 0.42%

Table 22. Results on replay attacks over a longer trace of 500,000 frames

Inj. Case Neural Network Parameters Results

Validation
set max fail

Gradient Validation
set MSE

Nr. epochs TN & TNR TP & TPR FP & FPR FN & FNR

5% IV 6 2.21e-02 2.6788e-02 79 399912 9267 122 10699
99.97% 46.41% 0.03% 53.59%

5% V 6 1.23e-02 3.3719e-02 62 449910 8981 160 13449
99.96% 40.04% 0.04% 59.96%

20% IV 6 6.93e-02 1.2133e-01 41 392552 35752 9215 42481
97.71% 45.70% 2.29% 54.30%

20% V 6 4.06e-02 6.7429e-02 78 329834 59553 121051 29562
73.15% 66.83% 26.85% 33.17%


