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Secure Time Synchronization with Sub-Microsecond
Accuracy in Controller Area Networks

Adrian Musuroi and Bogdan Groza

Abstract—We achieve sub-microsecond accuracy with an
AUTOSAR-compliant time synchronization protocol on CAN-FD.
In addition to this, we discover two attacks, double replays and
forecasting, on the AUTOSAR CanTSyn standard and design
fixes for them. Several simple and efficient algorithms are tested,
e.g., weighted learning, windowed and continuous averaging, in
order to determine the correct ratio between participants’ clocks
with minimal computational and communication overheads. We
also point out that, at such a high level of synchronization
accuracy, there may be significant differences when using simple
or double precision floats for encoding the clock ratio with some
of the algorithms. Our approach also exploits the Direct Memory
Access subsystem instead of CPU interrupts during protocol
executions, which reduces the processor load, making the solution
suitable for real-time systems. We evaluate the proposed protocol
in a realistic scenario by deploying it on an automotive-grade
setup with Infineon Aurix development boards.
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I. INTRODUCTION AND RELATED WORK

Contemporary vehicles incorporate state of the art tech-
nologies that augment the driving experience while provid-
ing enhanced user comfort and delivering valuable feedback
data through telemetry. From a design perspective, these
technologies are mediated by dozens of Electronic Control
Units (ECUs) which are connected through in-vehicle buses,
more commonly the Controller Area Network (CAN), with
the purpose of exchanging control, sensor, diagnostics and
other types of data. In this context, time synchronization is
a core pillar that supports proper coordination between ECUs
and the environment. Highly accurate time synchronization
enables ECUs to timestamp individual data points such that
these can be correctly placed on a timeline and morphed
into high-level objects facilitating driver assistance features.
Security protocols are often relying on timestamps for vali-
dating the freshness of the received data during authenticity
checks. Moreover, there are many applications that require
time knowledge to create logs for telemetry or data recorders
that can be subsequently used in forensic analysis. While
indeed the previously mentioned tasks may not need sub-
microsecond synchronization accuracy, the AUTOSAR spec-
ification of Time Synchronization over CAN (CanTSyn) [1]
asks for a time base reference clock with a worst-case accuracy
of 2µs, and we consider it a plus that our proposal goes well
below this limit. Moreover, in the attacks that we later discuss,
we show that the insecurity of CanTSyn can be exploited to
increase the synchronization error.
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Fig. 1. Automotive domain topology: ECUs interconnected via CAN buses

Early work by Gergeleit and Streich [2], addressing CAN
software-based time synchronization, achieved an accuracy of
∼20µs employing less than 20 synchronizations per second.
Later, Lee and Allan [3] brought fault-tolerant enhancements
to Gergeleit’s protocol, and reported a synchronization accu-
racy of ∼10µs with 1-second cyclic synchronizations. Fur-
ther improvements to Gergeleit’s protocol were proposed by
Akpinar et al. in [4] and [5]. In [4], a new strategy for times-
tamp gathering is employed to achieve a simulated accuracy
of ∼9µs , while the work in [5] applies a control loop to
account for clock drifts, achieving the accuracy of ∼5µs . The
core mechanism from Gergeleit’s protocol was also inherited
by AUTOSAR’s CanTSyn protocol [1], although it requires
an additional frame per synchronization. In [5], Akpinar et
al. evaluate the performance of CanTSyn. In their setup, the
protocol is able to achieve ∼100µs accuracy with a standard
implementation and up to ∼5µs accuracy when enhanced with
a custom control loop for drift corrections. The authors then
improved on drift corrections in [6], achieving ∼4µs accuracy.
Further, Einspieler et al. [7] showed that ∼100ns accuracy
can be obtained by applying the control loop from IEEE 1588
Ethernet interfaces for drift corrections in CanTSyn. Evidently,
this scenario is applicable to targets that benefit from the
availability of such peripherals. In all of the aforementioned
publications, CPU interrupt service routines are employed for
timestamping CAN Tx confirmation and Rx indication events
in order to improve accuracy. Differently, to align with the
constraints of some real-time systems, Luckinger and Sauter
[8] base their work on the CanTSyn protocol with deferred
CAN event processing in a real-time embedded operating
system. The authors employ an exponential weighted average
algorithm for clock rate adjustments, achieving an accuracy of
∼50µs . Other lines of work implemented the IEEE Precision
Time Protocol [9] to synchronize automotive-grade ECUs over
CAN-FD. In [10], an accuracy of ∼1.26µs was achieved
employing a single CAN-FD bus while in [11], the results
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yield an accuracy of ∼12.32µs in a zone-based architecture.
In both cases, Infineon TC275 targets were considered.

Without delving into details, we acknowledge works which
rely on specialized hardware such as [12], [13], [14]. In-
terestingly, Akpinar et al. [4], [6] propose the use of the
CAN phase-error for drift corrections. This approach does
not require modifications to the CAN protocol, but access to
information which CAN controllers typically do not provide.
The authors show a simulated performance of ∼4.25µs [4]
and later achieve ∼2µs accuracy in a practical setup [6].
Finally, Akpinar et al. propose a predictable timestamp gath-
ering method [15] in which CAN events get triggered by the
controller in the middle of a transmission, i.e., instead of in
the beginning or at the end. Similar to the previous proposals,
this approach requires a feature which is usually not provided
by commercial controllers. Nevertheless, by employing this
strategy, the authors achieve ∼1.4µs accuracy for software-
based timestamp gathering as well as ∼120ns employing
specialized hardware-based timestamps.

Last but not least, there is a substantial corpus of works
on CAN bus security. Although none of them addresses the
security of time synchronization protocols on CAN, some of
them may have a tighter relation to time synchronization.
For example, [16] uses clock skews to identify ECUs on the
CAN bus, but this methodology was proven insecure since
an adversary may change its clock skew to mimic the clock
of a legitimate ECU [17] (this is called a cloaking attack).
Needless to say, with use of the clock corrections introduced
by CanTSyn and in particular if the ECUs dynamically adjust
their skews as we later discuss, the previously mentioned
defense or attack methodologies become obsolete (since all
ECUs adjust their skews according to a reference time base).

As stated, to the best of our knowledge, while there are
many papers addressing CAN security, this is the first proposal
that addresses the security of CAN time synchronization
protocols. To align with industry demands, we build upon
AUTOSAR CanTSyn [1], which was introduced as early as
2014 as a standard way to synchronize ECU clocks over CAN
buses in domain-based architectures, as suggested in Figure
1. As a brief summary, our contributions are threefold and
organized as follows throughout this work. Firstly, in Section
II, we discuss several limitations of the AUTOSAR CanTSyn
which lead to two new attacks: double replays and forecasting.
Secondly, in Section III, we introduce a variation which is
based on individual authentication of participants, resulting in
a secure protocol which deviates only from draft requirements
of the latest AUTOSAR release [1], i.e., our proposal is
compliant with the standardized elements of the protocol,
allowing for immediate adoption. We also analyze four clock
rate adjustment strategies that can be easily integrated into
the standardized protocol for drastic performance improve-
ments. Thirdly, in Section IV, we provide a comprehensive
experimental analysis on automotive-grade setups, showing
that the achieved accuracy is generally less than 1µs, with top
performances in the range of 40-200ns . In a novel implemen-
tation approach, we show that Direct Memory Access (DMA)
can replace CPU interrupts for precise timestamp gathering,
making highly accurate time synchronization suitable for real-
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Fig. 2. Standardized AUTOSAR CanTSyn protocol (i) and our proposed
variant (ii) with an additional CHAL frame sent by each TS

time systems in which CPU interrupts may not be an option.

II. AUTOSAR CAN TIME SYNCHRONIZATION

This section presents the standard AUTOSAR CanTSyn
time synchronization protocol and its limitations.

A. Background

In the AUTOSAR architecture, time bases are maintained
by the Synchronized Time-Base Manager (StbM) [18], which
uses the CanTSyn protocol in order to synchronize with
other ECUs that are on the same CAN bus. The standard
defines two types of time bases: Synchronized Time Bases
and Offset Time Bases. A Synchronized Time Base is a
virtual clock that is maintained by an ECU and to which
other units may synchronize through the CanTSyn protocol.
An Offset Time Base is composed of a Synchronized Time
Base and a fixed offset value which is added to it, i.e., it is
not obtained directly through a clock synchronization protocol.
With regards to CAN communication, both types of time bases
require message exchanges. Although in this work we focus on
the security of time synchronization messages, i.e., messages
employed for adjusting Synchronized Time Bases, the same
design principles can be easily applied to offset transmissions.

B. Time encoding and standardized protocol steps

Time information is stored by the StbM using a 48-bit sec-
onds field and a 32-bit nanoseconds field, i.e., one nanosecond
is the tiniest unit of time that can be represented. Similar to
UNIX-based operating systems, the timestamp values indicate
the amount of time that has passed since January 1st, 1970.
For the purpose of CAN time synchronization, the standard
employs only the least significant 32 bits of the seconds field.
These bits cover a range of ∼ 136 years and are considered
sufficient for automotive applications. The remaining 16 most
significant bits of the seconds field are typically used as an
epoch indicator and they are not expected to change during
the lifetime of a vehicle. In the upcoming discussions, we use
the notation s(t) according to the CanTSyn standard to denote
the truncation to the least significant 32 bits of the seconds field
of timestamp t. Further, to denote the entire nanoseconds field
of timestamp t, we use the notation ns(t).
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Fig. 3. Structure of the standardized AUTOSAR CanTSyn SYNC and FUP
frames, in a configuration in which authentication is enabled

The time moderator (TM) sends periodical time synchro-
nization data to the time subordinate (TS) ECUs. We denote
the synchronization period as TSyn, which is a configurable
value in the AUTOSAR specification. Each protocol execution
consists of two sequential transmissions, i.e., a synchronization
frame (SYNC) and a follow-up frame (FUP), as shown in
Figure 2 (i). Since CanTSyn calls for periodical executions,
we use k as a superscript to differentiate between protocol
iterations. When a synchronization milestone is reached, TM
measures its clock t0 and triggers the broadcast transmission
of the truncated seconds field s(t0) in a SYNC message. Due
to unforeseen hardware and software delays, it is expected
for the actual message dispatch to encounter unpredictable
delays. Thus, when the SYNC transmission completes, the
TM captures t1 upon the CAN Tx complete event, while TS
captures t2 upon the CAN Rx indication event. To compensate
for the transmission delay, TM computes t4 = t1 − s(t0)
and subsequently broadcasts ns(t4) in a FUP message. Given
the payloads of the two messages, TS can then reconstruct
t1. As timestamps t1 and t2 are employed for the actual
synchronization, we will continue to refer to them as tSyn-M
and tSyn-S. Employing these notations, the TS computes its
clock offset relative to the TM as:

∆CanTSyn = tSyn-S − tSyn-M (1)

An intrinsic property of the CanTSyn protocol is that its
synchronization error ϵSyn strictly depends on the distance
between the moments of capturing tSyn-M and tSyn-S (clearly,
in an ideal scenario this distance is zero). In other words,
the synchronization error is ϵSyn = tSyn-S

′ − tSyn-M
′, where

tSyn-S
′ and tSyn-M

′ are timestamps captured by an external
reference clock (later in the experiments we employ a logic
analyzer for this purpose) when tSyn-S and tSyn-M are recorded.
Since CanTSyn leverages the acknowledgment mechanism of
the CAN protocol, which is immediate and requires a single
confirmation bit, highly accurate synchronization is achievable
– especially when timestamp gathering is implemented within
transmission complete and data received interrupts.

C. Structure of protocol frames

Some fine-grained details on the structure of CanTSyn
frames are worth mentioning. This structure is illustrated
in Figure 3. Although certain elements can vary with the
CanTSyn module configuration, we deliberately chose an
instance in which message authentication is enabled so that
we can assert the security of the protocol. The specifics of
other configurations are not of relevance for the enhancements
and results presented in this work, so we do not delve into
further details regarding them. We note that all configurations

TABLE I
ATTACKS, MITIGATION AND SHORTCOMINGS OF CANTSYN

Attack Mitigation Shortcoming Proposed fix

Spoofing
Group-MAC

authentication
TS impersonates TM Multi-MAC

authentication
Signature-based
authentication None N/A

Delay SYNC Tx delay
compensation

Postponed
transmissions possible

Challenge-
response

Replay Incorporate FV Double replays set TS
clock behind

Non-overridable
SYNC

Forecasting Reset and raise
event E SEQ

Set TS clock behind if
followed by replay

Add nonce to
SYNC

in which authentication is enabled are supported only for
CAN-FD buses and are in draft state in the latest release [1].

The SYNC and FUP messages are multiplexed under the
same CAN ID according to the standard. A value for this CAN
ID is not imposed nor suggested leaving it to the developer’s
choice. As depicted in Figure 3, the least significant byte is
the multiplexer, i.e., the value that distinguishes between the
SYNC and FUP message types. In both messages, the follow-
ing byte encodes a user byte (UB) which can be unrestrictedly
employed for embedding additional data if needed. Similarly,
the third byte is equally split into the time domain identifier
(D) which is used by the upper layer software for linking
components to time bases, and a sequence counter (SC) that
gets incremented for every protocol iteration. The fourth byte
encodes another UB in the SYNC message. For FUP, this
byte is split into the Synchronized to Gateway (SGW) and the
Overflow Seconds (OVS) flags. SGW indicates whether the
synchronization is received directly from the time base owner
or, when the owner is on a different bus, from a gateway, while
OVS flags whether a seconds overflow has occurred when
computing t4, i.e., if s(t4) is greater than zero, in which case
the TS needs to compensate for the overflow. For SYNC, the
remaining bytes are reserved, while for FUP messages they are
used for authentication purposes. The Freshness Value Length
(FVL) specifies the length of the Freshness Value (FV). The
content of the FV is not specified by the standard, however,
the StbM specification [18] states that this value should be
a counter or timestamp, thus preventing replay attacks. The
Integrity Check Value Length (ICVL) specifies the length of the
Integrity Check Value (ICV), i.e., a cryptographic authenticator
computed over the SYNC and FUP payloads. The standard
imposes the ranges [0,8] and [0,54] for the FVL and ICVL,
with the condition that their sum does not exceed the 54 most
significant bytes allocated for FV and ICV.

D. Security analysis and limitations

We consider the following four attack types: (i) spoofing
attacks, in which the adversary sends bogus messages in an
attempt to impersonate the TM, (ii) delay attacks in which
the adversary withholds genuine synchronization frames for
an arbitrary period of time, (iii) replay attacks, in which the
adversary re-transmits legitimate time synchronization frames,
and (iv) forecasting attacks, a variation of the classic replay
attacks in which the adversary anticipates the payloads of
legitimate time synchronization frames and transmits them
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(i) spoofing attack (ii) delay attack

(iii) double replay attack (iv) forecasting attack

Fig. 4. Schematics of spoofing (i), delay (ii), double replay (iii) and
forecasting (iv) attacks against the standardized AUTOSAR CanTSyn

beforehand. Against these four types of attack, CanTSyn has
some resilience but there are also some shortcomings which
are summarized in Table I and discussed in what follows.

Spoofing attacks. These attacks, suggested in Figure 4
(i), are addressed by CanTSyn through the inclusion of au-
thenticators, i.e., the ICV values, in FUP frames. The AU-
TOSAR standard allows either digital signatures or group-
MACs, i.e., MACs computed with a symmetric key that is
shared between the TM and each of the TS nodes from the
bus, to be employed for computing ICV values. Therefore,
the ICV is computed according to the authentication method
either as a signature or as a group-MAC: ICV-SIGk =
Sig(SYNCk[0 :15] || FUPk[0 :9] || FVk) or ICV-GMACk =
MAC(SYNCk[0 :15] || FUPk[0 :9] || FVk). Here, || denotes
concatenation, while the brackets indicate byte ranges.

But group-MACs cannot identify which group member
sent the data and therefore only the signature-based protocol
variant is resilient against impersonation attacks launched by
TS ECUs. This solution may not be always applicable since
digital signatures bring additional computational, memory and
communication overheads, which may not be supported by
all in-vehicle controllers. Moreover, the size of the ICV field
maxes out at 54 bytes and it is further constrained by the size
of the FV value. As a consequence, the inclusion of a digital
signature may be impractical in some setups.

Delay attacks. These attacks, suggested in Figure 4 (ii),
are addressed in CanTSyn by compensating the transmission
delay, i.e., through computing and broadcasting ns(t4) in
FUP. Thus, CanTSyn successfully prevents attacks that are
based on delaying the dispatch of the SYNC frame, e.g.,
through the injection of frames with higher priority on the bus.
However, this countermeasure is ineffective against man-in-
the-middle attacks, e.g., through gateways, or against delayed
executions, e.g., slowing down CPU interrupt routines. DMA
timestamping prevents the latter while the freshness element
FV has the purpose of preventing replays and delays. However,
the management of this value is not covered by the standard,
but outsourced to a Freshness Value Manager (FvM) module

which has to be designed and implemented independently.
Several design approaches are suggested in Annex A of the
AUTOSAR Specification of Secure Onboard Communication
(SecOC) [19], which rely either on synchronized time bases,
i.e., timestamps, or synchronized monotonic counters. We note
that the timestamp-based method may be unsatisfactory since
the synchronization of the time bases is itself the objective of
the protocol (resulting in a cyclic argument for security). On
the other hand, the counter-based approach does not ensure the
freshness of the data since a receiver cannot distinguish be-
tween a message that is delayed and one that is not (assuming a
man-in-the-middle adversary). In this approach, e.g., according
to [19], one or multiple freshness counters are synchronized
between the sender and receivers, i.e., TM and each of the TS
nodes from the bus. The counters are incremented for every
CanTSyn protocol execution and periodically synchronized,
e.g., at startup, through one-way control messages. A TS is
then able to detect replays by comparing the received FV to its
local counter. However, the TS will not be able to distinguish a
fresh message from a delayed one, which could be orchestrated
by a man-in-the-middle adversary.

Replay attacks. By enforcing non-repeatable FV values,
CanTSyn prevents an adversary from replaying FUP frames
or entire synchronization sequences. Regarding SYNC replays,
the protocol disallows non-valid frame sequences ([1], p. 50,
req. SWS CanTSyn 00182) and receiving two consecutive
SYNC frames will cause a TS to trigger an internal security
event, denoted as E SEQ in Figure 4 (iii), discard both SYNC
frames, and reset its protocol state machine, i.e., proceed
into the waiting for SYNC state. But while a succession of
two SYNC frames triggers the security event, a third SYNC
frame in this sequence will be accepted since the protocol
state machine was reset and receivers are waiting for it.
Consequently, a double replay will not be prevented. A double
replay attack begins with the TM sending a SYNC message,
followed by an immediate replay from the adversary (causing
the E SEQ event on the TS ECU), then the adversary replays
the SYNC frame again before the TM proceeds with the FUP
frame. This attack results in setting the TS clock behind, since
tSyn-M is captured on the transmission of the first SYNC frame,
while tSyn-S is captured on the reception of the third SYNC
frame.

Forecasting attacks. A variation of the previous attack leads
to forecasting attacks, as illustrated in Figure 4 (iv). Because
s(t0) and the sequence counter SC can be predicted based
on the previous SYNC frame (note that the synchronization
is cyclic, i.e., has a fixed period TSyn), an adversary can
anticipate legitimate SYNC payloads and send them before-
hand. Subsequently, when the TM reaches the synchronization
milestone and repeats the same SYNC frame, the TS will
encounter an E SEQ event. As in the previous attack, the
adversary replays the SYNC frame again, before the FUP
frame gets to be transmitted by the TM. This attack also results
in setting the TS clock behind, with tSyn-M being captured on
the transmission of the second SYNC frame and tSyn-S being
captured on the reception of the third SYNC frame.

Finally, CanTSyn is restricted to offset corrections only.
Following each synchronization, the accuracy steadily declines
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until the subsequent correction is applied. Thus, the maximum
error can only be constrained by elevating the synchronization
frequency, resulting in increased bus and CPU overheads. In
what follows, we address all these limitations.

III. CHALLENGE-RESPONSE CANTSYN WITH CLOCK
RATE CORRECTIONS

This section covers our proposed protocol modifications for
improving the security and accuracy of CanTSyn.

A. Strengthening CanTSyn security

To tackle the aforementioned security shortcomings of
CanTSyn, we use the following key modifications: (i) we use
an authentication strategy based on multi-MACs to prevent
spoofing attacks performed by a TS on the TM, (ii) we intro-
duce a challenge-response protocol to prevent delay attacks,
(iii) we introduce a requirement for non-overridable SYNC
frames to prevent replay attacks and (iv) we add a random
nonce in the SYNC frame in order to prevent forecasting
attacks. These modifications are detailed in what follows.

Figure 2 (ii) illustrates the proposed protocol variation. We
reserve an independent tuple (FVi, ICVi) for each TSi, i ∈
[1, 18], where FVi is the freshness value that is managed by
TSi and ICVi is the authenticator computed by the TM for TSi
as: ICV-µMACk

i = MAC(SYNCk[0 :15] || FUPk[0 :9] || FVk
i ).

The formats of the protocol frames are adopted as shown in
Figure 5. For both frames, the new format preserves the fields
covered by the least significant 10 bytes. We take advantage
of the reserved bytes from the SYNC frame to embed a
random nonce, making forecasting attacks impractical due
to the difficulty of predicting this value. In FUP, since the
task of managing FV values is delegated to the subordinates
themselves, the FVL field is set to 0, indicating that the TM
does not include any FV information in FUP transmissions.
The remaining 54 most significant bytes, i.e., which carry one
ICV field in the original protocol, are then split into 3-byte ICV
fields, where ICVi, i ∈ [1, 18] is the authenticator intended for
TSi. Figure 5 also introduces the structure of a new frame type,
denoted as CHAL, to be employed by TS units for transmitting
freshness values. We designate the least significant byte of the
frame to serve as a message type identifier. Further, the second
least significant byte holds the TSi identifier within its bus
SID = i, i ∈ [1, 18]. The next 8 bytes hold the value of FVi,
followed by a 6-byte ICV field that prevents impersonation
attacks against subordinates. Before synchronization milestone
k is reached, every TSi sends its own nonce FVk

i and captures
the timestamp tkChal when the transmission of the CHAL
frame completes. Then, by employing its CanTSyn timestamp
from the previous synchronization, i.e., tk−1

Syn-S, the CanTSyn
synchronization period, i.e., TSyn, and a tolerance factor δMax

for benign delays, TSi creates an acceptance window for
FVk

i as AW-FVk
i = TSyn − (tkChal − tk−1

Syn-S) + δMax. For a
missing FVk

i value, i.e., TSi fails to communicate the freshness
before protocol iteration k starts, the TM will simply omit the
computation and set ICVk

i to 0, without affecting the authen-
tication process for the other subordinates. Further, to prevent

Fig. 5. CHAL frame structure and our SYNC/FUP adaptations for improved
security (nonce in SYNC frame and multiple 3-byte ICV fields in FUP frame)

replay attacks, we require the implementation to enforce non-
overridable SYNC receptions. In this setting, the reception of
two consecutive SYNC frames will not cause the TS to reset its
internal state machine, but will still trigger the E SEQ security
event. Moreover, the second SYNC frame shall not override
the payload or the Rx timestamp of the first SYNC frame. We
note that no additional implementation is required for handling
dropped FUP frames, e.g., TM fails to send the FUP frame
after the SYNC frame, since AUTOSAR already implements
a timeout period ([1], p. 50) which causes the TS to reset
its CanTSyn state machine if no FUP frame arrives within
the tolerated time span. To help us validate the security of
the proposed protocol fix, we wrote a small ASLAN model
of the CanTSyn protocol, then we used CLAtse, one of the
model-checkers of the AVANTSSAR platform [20], to verify
the attacks and fixes. As expected, the model immediately
discovered the previously mentioned forecasting attack, while
the attack was no longer discoverable once introducing the
nonce in the SYNC package.

Our proposal trades between bus load and ECU resources
in order to fulfill the security demands which are not satisfied
by the AUTOSAR variants, i.e., FV management as well as
resilience against various attacks. Most of the additional load
falls on top of the TM. To synchronize N nodes, generating
multi-MACs instead of group-MACs brings N− 1 additional
MAC computations and keys. Then, the TM needs N additional
MAC computations to check the authenticity of the CHAL
frames. For each of the TS nodes, only one additional MAC
operation is needed for authenticating CHAL frames. Finally,
the challenge-response approach for managing FV values
increases the bus load by N additional CHAL frames.

B. Enhanced clock rate correction from CanTSyn timestamps

While the previously discussed protocol variation has better
security properties, we are still to answer the efficiency of
integrating clock rate correction algorithms into CanTSyn. We
introduce a clock rate correction parameter which we denote
as ϕ. The value of ϕ defaults to 1 and gets adjusted by the
TS during each CanTSyn protocol iteration. We employ the
CanTSyn timestamps to compute the drift rate of the TS
relative to the TM as: (tkSyn-M − tk−1

Syn-M)/(t
k
Syn-S − tk−1

Syn-S).
We explore four different algorithms for adjusting ϕ: im-

mediate adjustment, weighted learning, windowed averaging
and continuous averaging. A trivial approach is contained in
Algorithm 1, where ϕ is immediately updated based on the
most recent clock drift measurement. An obvious shortcoming
of this method is its unaccounted exposure to glitched delays
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Algorithm 1 Rate adjustment based on immediate observation
1: procedure UPDATEPHIONFUPRECEIVED(tkSyn-M, tkSyn-S, tk−1

Syn-M, tk−1
Syn-S)

2: ϕ← (tkSyn-M − tk−1
Syn-M)/(tkSyn-S − tk−1

Syn-S)

3: tk−1
Syn-M ← tkSyn-M

4: tk−1
Syn-S ← tkSyn-M

5: return ϕ
6: end procedure

Algorithm 2 Rate adjustment with weighted learning
1: procedure UPDATEPHIONFUPRECEIVED(tkSyn-M, tkSyn-S, tk−1

Syn-M, tk−1
Syn-S)

2: ϕ← αϕ+ β(tkSyn-M − tk−1
Syn-M)/(tkSyn-S − tk−1

Syn-S)

3: tk−1
Syn-M ← tkSyn-M

4: tk−1
Syn-S ← tkSyn-M

5: return ϕ
6: end procedure

Algorithm 3 Rate adjustment with windowed averaging
1: procedure UPDATEPHIONFUPRECEIVED(tkSyn-M, tkSyn-S, tk−1

Syn-M, tk−1
Syn-S)

2: w buf[w idx%w size]← (tkSyn-M − tk−1
Syn-M)/(tkSyn-S − tk−1

Syn-S)
3: w idx← w idx + 1
4: if w idx > w size then
5: ϕ← SUM(w buf)/w size
6: end if
7: tk−1

Syn-M ← tkSyn-M
8: tk−1

Syn-S ← tkSyn-M
9: return ϕ

10: end procedure

Algorithm 4 Rate adjustment with continuous averaging
1: procedure UPDATEPHIONFUPRECEIVED(tkSyn-M, tkSyn-S, tk−1

Syn-M, tk−1
Syn-S)

2: if count < max count then
3: acu← acu + (tkSyn-M − tk−1

Syn-M)/(tkSyn-S − tk−1
Syn-S)

4: count← count + 1
5: ϕ← acu/count
6: tk−1

Syn-M ← tkSyn-M
7: tk−1

Syn-S ← tkSyn-M
8: end if
9: return ϕ

10: end procedure

that may lead to high accuracy fluctuations. The following al-
gorithms address this shortcoming by accounting for past mea-
surements as well. Algorithm 2 employs weighted learning,
where we set parameters α, β to control the learning rate, i.e.,
[(α, β) | α, β ∈ [0, 1], α+ β = 1]. Clearly, a higher β value
leads to faster learning with higher fluctuations, while a higher
α will induce a slower but more stable convergence towards
the ideal rate correction value. Next, Algorithms 3 and 4 rely
on averaging multiple drift rate measurements. In Algorithm
3 the average is computed over a fixed window limited to
w size, while Algorithm 4 continuously accumulates values
until a maximum iteration number max count is reached, i.e.,
to prevent overflows. To provide a visual comparison of the
algorithms, we simulate the evolution of ϕ for each of them
in Figure 6, where we induce random noise and a glitch at

(i) immediate (ii) weighted learning

(iii) windowed averaging (iv) continuous averaging

Fig. 6. Simulated performance of the (i) immediate, (ii) weighted learning,
(iii) windowed averaging and (iv) continuous averaging clock rate adjustment
algorithms, with random noise and a glitch inserted at the 50th iteration

Fig. 7. Experimental setup with two Infineon controllers, NCV7344 CAN-
FD transceivers and Logic Pro 8, VN5620 measuring devices

the 50th synchronization. For weighted learning, we simulated
the algorithm in two configurations: α = 0.9, β = 0.1 as well
as α = 0.5, β = 0.5. Clearly, the immediate algorithm is
the most susceptible to noise and glitches. For the weighted
adjustments, the α = 0.9, β = 0.1 configuration is more stable,
however, the convergence towards the ideal ϕ value is slow.
The averaging algorithms are converging faster and present
little fluctuations overall. Since continuous averaging takes
into account the greatest number of drift values, its stability
outperforms all other algorithms.

IV. IMPLEMENTATION AND RESULTS

This section presents the implementation and the experi-
ments that we carry in order to determine the best alternative.

A. Experimental setup

We deployed the solution on two AURIX TriBoard devel-
opment boards: a TC297 board as TM and a TC277 board as
TS. The targets were configured to operate at their maximum
CPU speed, i.e., 300MHz for the TC297 and 200MHz for
the TC277 microcontroller, while the CAN controllers were
set at nominal baud rate 500kbps and fast baud rate 2Mbps.
We used external CAN-FD transceivers, i.e., NCV7344 from
Mikroelektronika, which were connected through jump wires
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Fig. 8. Depiction of the system response on CAN events, emphasizing the
difference between CPU (blue path) and DMA (red path) timestamping

and a breadboard. We later transitioned to a setup that is
representative of automotive CAN networks, by connecting
the boards to a real in-vehicle harness [21] and replaying a
trace that was collected from a real vehicle. The traffic is
composed of 89 classical CAN frames, i.e., up to 8 bytes of
payload, with cycle times ranging from 10ms up to 3s and IDs
ranging from 0x20 to 0x550, resulting in a total bus load of
∼ 37%. On top of this, we simulated up to 15 additional TSs
in order to evaluate the performance under full protocol load.
As for the CAN IDs required for time synchronization, we
simply chose the values 0x220 (SYNC and FUP) and 0x330-
0x33F (CHAL) such that they don’t overlap with any existing
IDs from the trace. We note that in this configuration the time
synchronization messages do not have the highest priority on
the bus. The tools that supported our evaluation are the Saleae
Logic Pro 8 analyzer, which operates at 500MS/s, together
with Vector’s VN5620 CAN Interface and CANoe 16 software.
Figure 7 illustrates the experimental setup.

B. Software implementation

The software implementation was supported by Infineon’s
AURIX Development Studio toolchain. We developed a stack
of software components that manage the virtual time, CAN
communication, IO channels and so forth.

Virtual time. In our implementation, the ECU virtual clock
is backed up by the System Timer (STM), i.e., a 64-bit free-
running timer operating at the frequency of 100MHz, which
can be synchronously read through the TIM0 and CAP 32-bit
registers. We configured the timer to generate CPU interrupts
every 50ms, by the means of which we cyclically update the
ECU virtual clock. When queried for the current time, the
software reads STM and adds the elapsed ticks since the last
interrupt to the latest virtual clock value. Further, we added a
clock rate correction parameter (with the default value of 1.0)
which has the option to be applied statically, i.e., only when
the virtual clock is read, or dynamically, i.e., every 50ms as
well, when the virtual clock is updated.

CAN Tx/Rx events and the DMA. The synchronization error,
i.e., ϵSyn, strictly depends on how close Tx and Rx events are
timestamped. Our first strategy employs the handling of the
events through CPU interrupts, during the execution of which
we immediately collect the timestamps. The second strategy

leverages the on-chip DMA controller for timestamp gathering.
In this case, CAN events are configured to trigger the DMA
engine to perform a set of two 32-bit move operations, i.e.,
one for each of the TIM0 and CAP registers, while the CPU
resorts to deferred processing of the frame contents. Since
the offset between TIM0 and CAP is 0x1C and the address
of TIM0 is not 64-bit aligned, i.e., a single transaction with
circular buffers would necessitate a high number of iterations,
we opted for a configuration of two DMA transactions con-
sisting of one 32-bit transfer each. We depict the distinction
between CPU and DMA timestamping in Figure 8. To enforce
the requirement of non-overridable SYNC frames, the DMA
channel was configured to operate in single mode, in which it
gets disabled after each SYNC frame reception. The CPU has
to re-enable the channel after processing the SYNC frame.

Security parameters for CanTSyn-µMAC. We configured
the protocol to be cyclically executed every second, i.e.,
TSyn = 1s. For frame authentication, we use 128-bit sym-
metric keys and AES-CMAC from WolfCrypt (https://www.
wolfssl.com/products/wolfcrypt/). Further, when clock rate
corrections are enabled, we experiment with both single and
double precision floating-point numbers with the compiler set
to comply with the IEEE standard for floating-point arithmetic
[22], i.e., TASKING option “0 - Strict IEEE-754”.

C. Data collection

To measure the synchronization error, i.e., ϵAcc, we im-
plemented IO interrupts during the beginning of which the
ECUs capture timestamps denoted as tAcc-M and tAcc-S. The
interrupts are triggered approximately 800ms after each pro-
tocol execution, i.e., 80% of the synchronization interval, and
the resulting tAcc-M and tAcc-S timestamps are subsequently
transmitted through dedicated CAN frames. Additionally, the
subordinate will also embed into the CAN frame its latest
clock correction rate ϕ. To account for delays regarding the
launch of the IO interrupt service routines, e.g., if one of
the targets is busy handling a different interrupt with higher
priority when the input pin toggle happens, we employ the
logic analyzer to timestamp the moments before the virtual
clocks are queried. We denote these logic analyzer timestamps
as tIO-M and tIO-S. The synchronization error is therefore
computed as:

ϵAcc = (tAcc-M − tAcc-S)− (tIO-M − tIO-S)︸ ︷︷ ︸
ϵIO

(2)

D. Results

We conducted an extensive suite of experiments to deter-
mine the performance in various settings. Our results are sum-
marized in Table II, which is divided into four test scenarios.

In the first two scenarios, which include 23 experiments
with all of the previously described algorithms, the CAN bus
is built with simple jump wires and the timestamp gathering
is performed employing either CPU interrupts or the DMA
engine. For the latter two scenarios, which include 4 exper-
iments with the best performing algorithms, we switched to
the real-world automotive CAN bus on which we replayed the
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TABLE II
PERFORMANCE EVALUATION OF ALGORITHMS IN VARIOUS SCENARIOS

Cnt. Adjustment alg. FP Adj. TReach Acc. TStab Acc. Complete trace Q4
Median Mean SD Median Mean SD ϵAcc

(iter.) (µs) (iter.) (µs) (µs) (µs) (µs) (µs) (µs) (µs) (µs)
CPU interrupts for timestamp gathering, CAN bus from jump wires

1 N/A (CanTSyn only) N/A N/A N/A N/A 11 -6.778 6.584 6.605 0.073 6.544 6.543 0.022 490.73
2 Immediate Double Dyn. 25 -0.205 18 -0.360 0.323 0.449 1.115 0.330 0.323 0.093 24.21
3 Immediate Double St. 2 -0.174 16 -0.156 0.197 0.303 0.851 0.184 0.210 0.099 15.76
4 Immediate Single Dyn. 9 -0.092 12 -0.312 0.221 0.330 1.065 0.186 0.224 0.128 16.81
5 Immediate Single St. 2 -0.180 47 -0.186 0.159 0.238 0.613 0.182 0.184 0.122 13.80
6 Weighted (0.9/0.1) Double Dyn 37 -0.237 39 -0.425 0.291 0.502 0.916 0.243 0.272 0.102 20.37
7 Weighted (0.9/0.1) Double St. 41 -0.249 50 -0.267 0.203 0.429 0.877 0.195 0.201 0.032 15.05
8 Weighted (0.9/0.1) Single Dyn. 113 -0.222 97 -0.464 0.424 0.580 0.821 0.370 0.320 0.122 24.01
9 Weighted (0.9/0.1) Single St. N/A N/A 41 -0.630 0.489 0.691 0.906 0.418 0.428 0.048 32.15
10 Weighted (0.5/0.5) Double Dyn. 7 -0.227 20 -0.119 0.231 0.322 0.572 0.216 0.250 0.117 18.74
11 Weighted (0.5/0.5) Double St. 8 -0.219 18 -0.219 0.171 0.225 0.435 0.172 0.186 0.049 13.95
12 Weighted (0.5/0.5) Single Dyn. 8 -0.247 56 -0.124 0.184 0.255 0.484 0.130 0.177 0.139 13.25
13 Weighted (0.5/0.5) Single St. 7 -0.240 27 -0.132 0.239 0.324 0.843 0.226 0.231 0.042 17.32
14 Windowed avg. (10) Double Dyn. 10 0.224 41 -0.055 0.258 0.511 1.306 0.266 0.287 0.149 21.53
15 Windowed avg. (10) Double St. 10 -0.189 23 -0.165 0.198 0.438 1.219 0.202 0.216 0.058 16.18
16 Windowed avg. (10) Single Dyn. 11 -0.242 32 -0.168 0.334 0.520 1.141 0.314 0.312 0.118 23.39
17 Windowed avg. (10) Single St. 10 -0.128 40 -0.258 0.282 0.512 1.223 0.262 0.265 0.044 19.87
18 Continuous avg. Double Dyn. 4 -0.085 19 -0.117 0.333 0.373 0.513 0.329 0.324 0.159 24.27
19 Continuous avg. Double St. 2 -0.234 19 -0.166 0.205 0.240 0.394 0.211 0.215 0.030 16.14
20 Continuous avg. Single Dyn. 4 -0.197 16 -0.317 0.679 1.158 0.988 2.276 2.167 0.405 162.55
21 Continuous avg. Single St. 2 -0.116 16 -0.220 0.555 1.110 0.926 2.320 2.163 0.415 162.23

DMA engine for timestamp gathering, CAN bus from jump wires
22 Windowed avg. (10) Double St. 11 0.136 25 0.204 0.192 0.387 1.159 0.176 0.161 0.049 12.10
23 Continuous avg. Double St. 2 0.188 16 0.156 0.214 0.250 0.468 0.220 0.223 0.130 16.72

CPU interrupts for timestamp gathering, CAN bus from real in-vehicle harness, close ECUs
24 Windowed avg. (10) Double St. 11 -0.117 28 -0.123 0.146 0.371 1.160 0.145 0.157 0.041 11.80
25 Continuous avg. Double St. 2 -0.115 12 -0.115 0.145 0.178 0.372 0.162 0.170 0.039 12.73

CPU interrupts for timestamp gathering, CAN bus from real in-vehicle harness, distant ECUs
26 Windowed avg. (10) Double St. 11 -0.191 22 -0.154 0.165 0.383 1.138 0.164 0.176 0.038 13.19
27 Continuous avg. Double St. 3 -0.170 39 -0.071 0.066 0.124 0.596 0.047 0.055 0.034 4.09

in-vehicle collected trace. In this setting, we first mounted the
ECUs closer to each other, i.e., 1.9m apart, after which we
placed them at the bus ends, i.e., 5.1m apart. The first column
of Table II indicates the experiment number. Columns two to
four specify which clock rate adjustment algorithm is applied,
the configured precision of the floating-point engine, and the
configured clock rate correction type, i.e., static or dynamic.
The following columns characterize the protocol performance.

We use several metrics to assert the efficiency of the
algorithms. Firstly, we use TReach to denote the number of
CanTSyn protocol iterations until reaching the 0.250µs accu-
racy threshold, which was chosen based on empirical evidence.
Secondly, we use TStab to denote the number of protocol
iterations until the estimation stabilizes - this is defined as
the iteration when a smoothed window computed over the last
10 consecutive accuracy measurements yields an error of less
than 0.001µs, which was chosen since one nanosecond is the
tiniest unit of time that can be represented. For each threshold,
we display the synchronization error that was measured upon
reaching it. Thirdly, we consider the median, mean and stan-
dard deviation which are usual statistical metrics. We present
these metrics as computed over the entire trace as well as
over the last quarter, i.e., Q4, when the synchronization is
presumably more stable. Finally, for Q4, we also computed
the total synchronization error ϵAcc as the sum of the absolute
values of all individual synchronization errors ϵAcc.

1) Free-run and CanTSyn-µMAC without rate corrections:
For our first experiment, we disabled clock corrections alto-
gether to observe the individual clock drifts of the two boards
employing the VN clock as reference. During one second, the
TM clock remains behind the VN clock by an average of

75.4µs, while the subordinate lags behind by an average of
83.2µs. During these measurements we found that the TM
clock is more stable, with a clock jitter of approximately
±1.25µs from the average value. In comparison, the precision
of the TS clock fluctuates by approximately ±3.5µs. Next,
we enabled CanTSyn offset corrections in order to establish
a baseline for the protocol performance. Unsurprisingly, the
execution period of one second is not sufficient to maintain
sub-microsecond accuracy. As Table II shows, the threshold
TReach is never reached, instead the protocol stabilizes fairly
soon with an accuracy of −6.778µs. This error value is in line
with the clock drifts that we previously mentioned.

2) CanTSyn-µMAC with clock rate corrections: Clearly,
clock rate corrections enable substantial performance improve-
ments. In all cases, we observed that dynamic corrections
exhibit greater fluctuations and therefore our forthcoming
discussions are focused on static corrections exclusively. For
weighted learning, we first evaluated the α = 0.9, β = 0.1
configuration and concluded it to be too slow, in some cases
not reaching the TReach threshold at all. We then tuned the
weighted learning algorithm to α = 0.5, β = 0.5. For
windowed averaging, we chose the window size of 10. Fig-
ure 9 illustrates the accuracy evolution associated with each
measurement. Here, the results from the left column were
obtained with single precision floating-point numbers, while
the right column contains results obtained employing double
precision floats. We outline with vertical lines the iterations in
which threshold TReach is surpassed. Generally, all algorithms
yield better results when their computations are based on
doubles. Opting for single precision does not compromise by
much, except for the continuous averaging method, where the
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(i) immediate (single precision) (ii) immediate (double precision)

(iii) weighted α = 0.5, β = 0.5 (single
precision)

(iv) weighted α = 0.5, β = 0.5 (double
precision)

(v) windowed averaging (single precision) (vi) windowed averaging (double
precision)

(vii) continuous averaging (single
precision)

(viii) continuous averaging (double
precision)

Fig. 9. Synchronization error ϵAcc for various algorithms during the first
100 iterations, the vertical lines mark the attainment of TReach

(i) windowed averaging (ii) continuous averaging

Fig. 10. Synchronization error ϵAcc during the first 100 iterations, for
windowed averaging (i) and continuous averaging (ii) using DMA timestamps,
the vertical lines mark the attainment of TReach

(i) close ECUs (ii) distant ECUs

Fig. 11. Synchronization error ϵAcc during the first 100 iterations, using
the continuous averaging algorithm in the real-world automotive test bed, the
vertical lines mark the attainment of TReach

TABLE III
IMPACT OF THE ADDITIONAL CHAL FRAMES ON BUS LOAD, MEASURED

ON COLLECTED TRACE WITH NOMINAL 500KBPS BAUD RATE

No. of subordinates, i.e., of CHAL frames per synchronization
0 1 4 7 10 13 16

Min(%) 36.28 36.32 36.43 36.50 36.44 36.41 36.44
Max(%) 36.68 36.79 36.89 37.04 37.10 37.24 37.35
Avg.(%) 36.43 36.47 36.58 36.70 36.82 36.93 37.05

accuracy declines quickly due to cumulative precision losses.
This suggests that when the target does not support double
precision floats, other algorithms should be preferred. In this
case, windowed averaging is the most suitable candidate since
it has the best resilience against sporadic glitches. Indeed, dur-
ing our measurements we encountered CAN controller glitches
which lead to ϵSyn spikes and subsequently to significant ϕ
fluctuations as suggested by some plots in Figure 9. Further,
for scenarios in which doubles are available, we conclude that
the accumulated averaging algorithm outperforms the others.
Although the mean and median metrics from Table II are
comparable, the standard deviation proves that accumulated
averaging is the most stable approach.

3) DMA timestamp gathering: We evaluated the windowed
and continuous averaging algorithms employing timestamps
acquired through the DMA engine. Consistent with our previ-
ous results, static corrections outperform dynamic corrections.
As shown in Figure 10, the target encountered extensive clock
jitter at the beginning of the latter measurement, i.e., when
continuous averaging was employed. According to Table II,
the clock was stabilized in Q4 and the results are comparable
to the CPU timestamp gathering use case. For windowed
averaging, the clock encountered lenient jitter and the results
are better than in the CPU timestamp gathering use case. We
therefore do not attribute the fluctuations to the DMA engine,
but rather to the clock instabilities of the TC277 board.

4) In-vehicle CAN network with real-world traffic: Finally,
our results show that the proposed solution is applicable to
real-world scenarios as well. The visual representation of these
results is presented in Figure 11. Again, we ran the windowed
and continuous averaging algorithms, obtaining the best results
so far. The bus load measurements are shown in Table III.
The case when no CHAL frames are transmitted corresponds
to the bus load obtained with the original protocol from the
AUTOSAR specification [1]. When evaluating our proposal,
we observed a bus load increase of under 1%. Furthermore, all
results presented in Table III were obtained using the 500kbps
baud rate for the entire frame. When switching to the fast
2Mbps baud rate for data, we measured an average bus load
of 36.54% in case of 16 subordinates. This result emphasizes
the minimal impact of the additional CHAL frames on bus
load. Based on our measurements with the logic analyzer, the
transmission time of a CHAL frame is ∼ 130µs and therefore
if all 16 CHAL frames are issued simultaneously, a sender of
a low-priority frame will encounter a delay of ∼ 2.08ms. For
a deeper analysis of the delays, we use the recently proposed
framework from [23], which extends the reference work [24] to
CAN-FD. In order to determine the worst-case response time
(WCRT) for each message Mi, i.e., Ri = max

0≤q<Qi

Ri(q), where
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Fig. 12. WCRT for all IDs computed over the original trace (blue) and after
adding the CanTSyn frames (red)

i is the frame ID and Qi the number of expected transmissions
of Mi during the bus busy period, we solve the equation:

Ri(q) = Ji + wi(q)− qPi + CDi (3)

Where Ji is the queueing jitter, wi is the worst-case trans-
mission delay, Pi is the transmission period and CDi

is the
worst-case transmission time of message Mi. Due to the low
bus load, all computed Qi values were equal to 1 in our case,
therefore q = 0. Since it is out of scope for the current work,
we do not include a fault model in our analysis. For classic
CAN frames, CDi

is computed considering the nominal and
data bit times τbit = τdbit = 2µs, while for the 2Mbps
CAN-FD frames we employed τdbit = 500ns. Further, wi

is obtained by solving the recurrence:

wn+1
i = Bi +

∑
k<i

⌈wn
i + Jk + τbit

Pk

⌉
CDk

(4)

Here, Bi is the maximum blocking time caused by a mes-
sage with lower priority. Figure 12 shows a 3D plot of the
WCRTs computed over the original trace compared with those
obtained after adding the CanTSyn frames for the case of 16
subordinates. As expected, the increase of the response time
is proportional with the cycle time and inversely proportional
with the priority of the ID. For most IDs, the added delay is
below 1-2ms and only for low-priority IDs it tops around 8ms.
With optimal traffic scheduling, the response times can be
reduced to 0 since the bus load is below 40%, but a complete
analysis goes beyond the scope of this work.

V. CONCLUSION

Secure and highly accurate clock synchronization can be
easily achieved with few modifications to the AUTOSAR
CanTSyn protocol. Out of the four algorithms that we tested,
we conclude that the averaging-based methods perform better.
When double precision floating-point numbers are available,
the continuous averaging performs best, but with single pre-
cision floats the accuracy declines quickly, making the win-
dowed average approach the preferred option. Clearly, stati-
cally applied clock rate corrections provide better resilience
against sporadic noise and jitter. Nevertheless, our results
show that employing the DMA for timestamp gathering yields
similar performance results, i.e., in the range of 200ns , making
this mechanism feasible for systems in which high accuracy
is demanded and CPU interrupts are not an option.
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