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a b s t r a c t

Wireless sensor networks are often used to monitor and measure physical characteristics from remote
and sometimes hostile environments. In these circumstances the sensing data accuracy is a crucial attri-
bute for the way these applications complete their objectives, requiring efficient solutions to discover
sensor anomalies. Such solutions are hard to be found mainly because the intricate defining of the correct
sensor behavior in a complex and dynamic environment. This paper tackles the sensing anomaly detec-
tion from a new perspective by modeling the correct operation of sensors not by one, but by five different
dynamical models, acting synergically to provide a reliable solution. Our methodology relies on an
ensemble based system composed of a set of diverse binary classifiers, adequately selected, to implement
a complex decisional system on network base station. Moreover, every time a sensing anomaly is discov-
ered, our ensemble offers a reliable estimation to replace the erroneous measurement provided by
sensor.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A wireless sensor network (WSN) is a collection of tiny, inex-
pensive and low-power devices that can be deployed throughout
a geographical space for fine-grained monitoring and event detec-
tion. Besides its computing and communication potential, a WSN
is, first of all, an advanced distributed measurement system which
is often prone to sensing anomalies that can cause erroneous data,
compromising the objectives of the entire network.

There are three major sources of sensor anomalies within WSN:
(i) software or/and hardware failures – breakdowns in any subsys-
tem of a sensor node or even battery discharging can produce
wrong sensing data; (ii) security attacks – when a malicious entity
compels the sensors to report erroneous measurements or to drop
measurement data packages (Walters, Liang, Shi, & Chaudhary,
2006); (iii) environment related sources – when sensor nodes can-
not measure the physical value correctly due to unfavorable phe-
nomena that can arise in the harsh environments in which they
are often deployed.

Generally speaking, sensing anomaly detection refers to the
problem of discovering patterns in measurement data that do not
match with expected behavior (Chandola, Banerjee, & Kumar,
2009; Rajasegarar, Leckie, & Palansiwami, 2008; An, Heo, & Chang,
2011). This is not a simple task mainly because an estimated model
of ‘‘correct behavior’’ is always hard to find. In the case of a WSN
there is an inherent feature on which we can rely – sensing redun-

dancy (Curiac, Volosencu, Pescaru, Jurca, & Doboli, 2009), which
takes two basic forms: physical redundancy that implies the use
of more than one sensor node for measuring the same localized va-
lue; and analytical redundancy that implies a mathematical model
for evaluating the value provided by one sensor by taking into con-
sideration the past and present values of neighboring sensors (spa-
tial redundancy), the past values of the sensor itself (temporal
redundancy) or both (spatiotemporal redundancy).

In the last decade a series of relevant approaches based on
assortments employing different types of analytical redundancies
and intelligent detection algorithms have been proposed for solv-
ing the issue of sensing anomaly discovery.

In (Siripanadorn, Hattagam, & Teaumroong, 2010) a mixture
between a competitive learning method called the self-organizing
map (SOM) and the discrete wavelet transform (DWT) is used to
detect anomalies from synthetic and real-world datasets.

A two-step temporal modeling procedure, developed to analyze
and extract semantic symbols from a sequence of observations, is
presented in Li, Thomason, and Parker (2010) where an intelligent
system detects time-related changes online by using a likelihood-
ratio detection scheme. The algorithm is distributed, and supports
a hierarchical learning structure that can scale to large number of
sensors.

The use of Bayesian networks as means for unsupervised learn-
ing and anomaly detection in gas monitoring sensor networks for
underground coal mines is described in Wang, Lizier, Obst,
Prokopenko, and Wang (2008). The authors showed that the
Bayesian network model can learn cyclical baselines for gas con-
centrations, thus reducing false alarms usually caused by flatline
thresholds. Their solution was proved to be efficient in both
distributed and centralized approach.
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An efficient method applying principal component analysis
(PCA) simultaneously on multiple metrics received from various
sensors is depicted in Chatzigiannakis and Papavassiliou (2007).
One of the key features of this approach is that it provides an inte-
grated methodology of taking into consideration and combining
effectively correlated sensor data, in a distributed fashion. Further-
more, it allows the integration of results from neighboring network
areas to detect correlated anomalies that involve multiple groups
of nodes.

Our paper tackles the sensing anomaly discovery from a new
perspective: the modeling of the correct behavior for sensors is
done not by one, but by five different models, acting synergically
to provide a reliable solution. For this, we developed an ensemble
based system (EBS) containing five different binary classifiers, each
categorizing every network node as being accurate or erroneous,
the final decision being taken by the entire ensemble using a voting
procedure. It is broadly accepted that the overall efficiency of such
committees of classifiers can occur only if there is diversity among
its components (Polikar, 2006). In our proposal, the heterogeneity
of classifiers is achieved by using various and carefully selected
classifier architectures and different sets of input data. In order
to completely solve the problem, our ensemble not only discovers
sensing errors, but offers reliable estimations to replace the mea-
surements affected by these anomalies.

The remainder of the paper is organized as follows. In Section
2, we introduce the philosophy of our ensemble based sensing
anomaly detection. Section 3 describes the architecture of each
individual classifier, pointing out the way in which the correct
sensing behavior is modeled and predicted, while Section 4 depicts
the decisional block of the ensemble based on weighted voting
algorithm. In Section 5, we present the methodology used for train-
ing and testing of the ensemble. Section 6 covers a test case illus-
trating the entire methodology and, finally, conclusions are offered
in Section 7.

2. Ensemble based sensing anomaly detection

Discovering sensing anomalies in the context of WSN is a chal-
lenging issue due to the complexity of the environment in which
sensor nodes are deployed. Often, this subject is tackled using ded-
icated decisional systems. For acquiring node behavior related
decisions, it makes sense to ask more than one decision making en-
tity, because this practice assures indubitably a better, more in-
formed, and trustable final decision. We label these decisional
instances as classifiers or experts and their collections as ensemble
based systems (Dietterich, 2000; Ho, Hull, & Srihari, 1994; Polikar,
2006; Wang, Hao, Ma, & Jiang, 2011).

In order to periodically detect and investigate each and every
sensor anomaly, an ensemble based system has been designed.

As presented in Fig. 1, this ensemble encloses several binary
classifiers that independently categorize the state of each sensor
as ‘‘reliable’’ or ‘‘unreliable’’. All the classifier outputs will be aggre-
gated using a weighted majority algorithm to obtain the conclud-
ing ensemble decision. This final ensemble decision will be
further used by the base station to take all the required actions
for the unreliable nodes (e.g. removal of the untrustworthy nodes
from the WSN for a specified period of time).

Our ensemble based methodology reveals the following
characteristics:

– The EBS input data are represented by past and present mea-
surements gathered by the node under investigation (node A)
and respectively, past and present measurements gathered by
each of the node A neighboring nodes.

– There are five binary classifiers involving different prediction
techniques and different types of inputs to assure the required
diversity of classifiers. Each classifier offers its own hypothesis
hi (‘‘reliable’’ or ‘‘unreliable’’) about the sensing correctness of
the node under investigation.

– The overall ensemble decision block is based on a weighted
majority algorithm.

– If the investigated node is found as presenting sensor anoma-
lies, the network base station acts in consequence and can
exclude that specific sensor from the list of network functioning
sensors for a limited period of time. As an example, this can be
achieved based on the following rule: if the EBS indicated at
least three times that the node A suffers from a sensor anomaly,
the base station decides to inactivate the sensor. The base sta-
tion could later reactivate the sensor after repeating the EBS
investigation by testing if new readings became appropriate.

– Using the power of ensemble, a reliable estimation of the mea-
surement affected by anomaly is automatically offered any time
when needed.

In the following paragraphs the design of each EBS component,
together with details regarding training and testing of the ensem-
ble are offered.

3. Designing the classifiers

The design of individual classifiers to fulfill the EBS require-
ments is not a simple task. This process has to be governed by
one magic word: diversity. As a result, any stratagem for generat-
ing the ensemble members must be focused on the ensemble’s het-
erogeneity improvement.

The diversity of classifiers may originate from three basic
sources:

a. classifier structure: the use of diverse classifier algorithms
(Hsu & Srivastava, 2009; Tsoumakas, Katakis, & Vlahavas,
2004) can assure the required heterogeneity (diversity
through structure);

b. classifier internal parameters: by using different training
datasets (García-Pedrajas & Ortiz-Boyer, 2009; Kim & Kang,
2010; Li & Sun, 2012; Shirai, Kudo, & Nakamura, 2009) or
diverse initializations of the training algorithms, the classifi-
ers having exactly the same structure may cover different
regions of the classified workspace, assuring the heterogene-
ity (diversity through parameters); and

c. classifier inputs: the diversity may be assured by applying
different inputs to identical classifiers (diversity through
inputs); usually this channel to obtain diversity is irrelevant,
but when there is an overabundance of data sources it can be
a viable alternative.Fig. 1. Ensemble based sensing anomaly detection.
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There are circumstances in which these three possibilities are
combined resulting more complex ensembles, but applying met-
rics to evaluate diversity in these cases may become very difficult.

Due to the specificity of WSN applications we chose to assure
the diversity of classifiers using a mixture between diversity
through structure and diversity through inputs. From this perspec-
tive we developed five classifiers that combine the two kinds of in-
put data (measurement time series provided by the sensor under
investigation and the measurements gathered from neighboring
sensors), with linear or complex nonlinear models:

– average based classifier;
– autoregressive linear predictor based classifier;
– neural network based classifier;
– neural network autoregressive predictor based classifier;
– Adaptive Neuro-Fuzzy Inference System (ANFIS) based

classifier.

All these classifiers are built based on a preset configuration
that includes:

� a prediction block – this block encapsulates a linear or nonlinear
model of the ‘‘correct behavior’’ of the sensor and relies on the
analytical redundancy feature of the WSNs. Manipulating mea-
surement data often affected by errors gathered from a dynamic
and complex environment, the predictor block parameters have
to be very carefully chosen. By choosing different types of pre-
diction algorithms, the required diversity can be assured.
� an error computing block that compares the sensor current

measurement with its predicted value; Practically, this block
compares the actual behavior of the sensor under investigation
with a modeled ‘‘correct behavior’’.
� an internal decision block that takes the individual resolution of

the classifier – correct or incorrect behavior, using a carefully
chosen threshold as the limit between good and bad behavior.

3.1. Average based classifier

The average based classifier (AVC) is computationally the sim-
plest binary classifier used in our ensemble. Based on measure-
ment gathered by the sensor under investigation at a specific
moment in time hA(t) and on the measurements provided by k
adjacent sensors at the same moment in time aggregated in the in-
put vector hAVC(t), it provides a binary output: ‘‘0’’ meaning normal
functioning of sensor A and ‘‘1’’ meaning abnormal functioning.

hAVCðtÞ ¼ ½h1ðtÞ h2ðtÞ . . . hkðtÞ�: ð1Þ

This classifier exploits the analytical spatial redundancy feature
of WSN that allows the estimation of the measurement gathered
from sensor A using the measurement values provided by neigh-
boring sensors. In this case, the estimation will be obtained using
a simple averaging scheme. As can be seen in Fig. 2, the classifier’s
internal structure consists of one average computation block, one
error computation block and one internal decisional block.

Classifier’s average computation block receives all present mea-
surement values of each of the k neighbors and computes the aver-
aged value as presented in (2):

hA;AVCðtÞ ¼
1
k

Xk

i¼1

hiðtÞ: ð2Þ

The average value hA,AVC(t) is subtracted from node’s current mea-
surement value, resulting the error eAVC(t):

eAVCðtÞ ¼ hAðtÞ � hA;AVCðtÞ: ð3Þ

The obtained error value is then evaluated by classifier’s deci-
sional block for producing hAVC(t) hypothesis. This evaluation is
performed by comparing the error value with a given threshold
eAVC. If the absolute value of the error exceeds eAVC, the classifier
outputs a hypothesis equal to ‘‘1’’, meaning that the measurement
provided by the node A was classified as being erroneous:

hAVCðtÞ ¼
0 if jeAVCðtÞj < eAVC

1 if jeAVCðtÞjP eAVC

�
: ð4Þ

In the training process, there is only one AVC parameter that
has to be established: the threshold eAVC. This is done based on tri-
als, experience and intuition of the human expert which plays a
central role.

3.2. Autoregressive linear predictor based classifier

The autoregressive linear predictor based classifier (ALC)
exploits the analytical temporal redundancy feature of WSN that
allows the estimation of the measurement gathered from a specific
sensor A using past measurements of the same sensor to supply a
binary output: ‘‘0’’ meaning normal functioning of the sensor and
‘‘1’’ meaning abnormal functioning.

In this case, the estimation will be obtained using an autore-
gressive predictor based on a numerically robust variant of recur-
sive least square (RLS) method Ljung & Soderstrom, 1987; Yang &
Bohme, 1992. As can be seen in Fig. 3, the classifier’s internal struc-
ture consists of one autoregressive prediction block, one error cal-
culation block and one internal decisional block.

Classifier’s autoregressive prediction block receives past mea-
surement values provided by the sensor under investigation:

hALCðtÞ ¼ ½hAðt � 1Þ � � � hAðt � nÞ� ð5Þ

and predicts its current value as shown in (6), where n is the auto-
regression order, the parameters a1(t), a2(t), . . . an(t) are estimated
using a robust recursive least square algorithm, and n(t) is consid-
ered to be a white-noise perturbation

hA;ALCðtÞ ¼ a1ðtÞ � hAðt � 1Þ þ � � � þ anðtÞ � hAðt � nÞ þ nðtÞ: ð6Þ

The predicted value hA,ALC(t) is subtracted from node’s current mea-
surement value, obtaining the error eALC(t) as shown in (7):

eALCðtÞ ¼ hAðtÞ � hA;ALCðtÞ: ð7Þ

The obtained error value is then evaluated by classifier’s internal
decisional block for producing hALC(t) hypothesis in a similar man-
ner as the one described by (4). If the error value exceeds the value

Fig. 2. Average based classifier. Fig. 3. Autoregressive linear predictor based classifier.
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of a given threshold eALC, the classifier outputs a hypothesis equal to
‘‘1’’, meaning that the measurement provided by the node A was
classified as being erroneous.

The classifier has some internal parameters that have to be
thoroughly established: the threshold eALC, the autoregression
order n, and the initialization parameters of the RLS algorithm.
The threshold eALC is set based on trials, experience and intuition
of the human expert, the autoregression order is a positive integer
with values among 3 and 6 to make a reasonable balance between
precision and computational time, and initialization parameters of
RLS are set according to prescriptions when no a priori information
are available (Ljung, 2007).

An important remark upon the use of ALC: the classifier can be
used as a part of EBS only after some time steps (e.g. 2n time sam-
ples) because the prediction offered by RLS needs some time until
the parameter convergence (Ljung, 1999).

3.3. Neural network based classifier

The neural network based classifier (NNC) processes the current
value provided by the sensor under investigation and the current/
past values gathered from adjacent sensors to provide a binary out-
put: ‘‘0’’ meaning normal functioning of the sensor and ‘‘1’’ mean-
ing abnormal functioning. This classifier exploits the analytical
spatial redundancy feature of WSN that allows the estimation of
the measurement gathered from a specific sensor A using only
measurements provided by neighboring nodes. In this case, the
estimation will be obtained using a neural network predictor. By
using a strong nonlinear model (neural network) to approximate
the ‘‘normal’’ operation state of a sensor we can model more
sophisticated situations than the linear ones (ALC or AVC).

As can be seen in Fig. 4, the classifier’s internal structure con-
sists of one feed-forward neural network, one error calculation
block and one internal decision block. The neural network, based
on its input vector that contains current/past measurements pro-
vided by its k neighbors:

hNNCðtÞ ¼ ½h1ðtÞ � � � h1ðt � nÞ � � � hkðtÞ � � � hkðt � nÞ�; ð8Þ

predicts the actual value gathered from sensor A – hA,NNC(t). This
prediction is subtracted from the current measurement of the sen-
sor under investigation hA(t) to obtain the error:

eNNCðtÞ ¼ hAðtÞ � hA;NNCðtÞ; ð9Þ

which will be used by the internal decision block to obtain the clas-
sifier’s hypothesis hNNC(t). Classifier’s decisional block functions the
same as the one included in the average based classifier but uses
another threshold: eNNC.

The classifier has some internal parameters that have to be
carefully established: the threshold eNNC, the neural network struc-
ture (number of layers, number of neurons on each layer, etc.) and
the neural network’s weights. The threshold eNNC and the structure
of the neural network are set based on trials, experience and intu-
ition of the human expert. The neural network training can be done
in an automated fashion using a backpropagation algorithm (e.g.
Levenberg–Marquardt). To make a reasonable compromise

between complexity and computing time, we chose to use only
measurements provided at last three moments in time: t, t � 1
and t � 2.

This classifier can be used as a component in our EBS only after
n time samples, this period being necessary to populate all compo-
nents of the input vector hNNC(t) with real values.

3.4. Neural network autoregressive predictor based classifier

The neural network autoregressive predictor based classifier
(NNAC) processes the values provided only by the sensor under
investigation to provide a binary output: ‘‘0’’ meaning normal
functioning of the sensor and ‘‘1’’ meaning abnormal functioning.
In fact this is an alternative to the autoregressive predictor based
classifier that uses a strong nonlinear model (neural network)
instead of a linear model. This classifier exploits the analytical tem-
poral redundancy feature of WSN that allows the estimation of the
measurement gathered from a specific sensor A using past mea-
surements of the same sensor. In this case, the autoregressive pre-
diction process is done by a neural network predictor.

As can be seen in Fig. 5, the classifier’s internal structure is al-
most identical with the one presented for NNC, with the difference
that the input vector includes only past measurements obtained
from sensor A:

hNNACðtÞ ¼ ½hAðt � 1ÞhAðt � 2Þ � � � hAðt � nÞ�: ð10Þ

This will impose some changes in the neural network structure (e.g.
number of neurons on input layer).

In the case of NNAC, the internal parameters that have to be
cautiously established are: the threshold eNNAC, the neural network
structure and the neural network’s weights. The threshold eNNAC

and the neural network structure (number of layers, number of
neurons on each hidden layer) are set based on trials, knowledge
and intuition of the human expert. The neural network weights
can be obtained using an automated procedure based on a back-
propagation algorithm. To make a rational compromise between
complexity and computing time, we decided to use only measure-
ments gathered at last four moments in time: t, t � 1, t � 2 and
t � 3.

This classifier can be used as a component in our EBS only after
n time samples, this period being necessary to populate all compo-
nents of the input vector hNNAC(t) with real values.

3.5. ANFIS based classifier

The ANFIS based classifier (ANFISC) processes the past values
provided by the sensor under investigation and current/past values
provided by adjacent sensors to provide a binary output: ‘‘0’’
meaning normal functioning of the sensor and ‘‘1’’ meaning abnor-
mal functioning. This classifier exploits the analytical spatiotempo-
ral redundancy feature of WSN that allows the estimation of the
measurement gathered from a specific sensor A using past mea-
surements of the same sensor and measurements provided by
neighbor nodes. By using a strong nonlinear model (ANFIS) to

Fig. 4. Neural network based classifier. Fig. 5. Neural network autoregressive predictor based classifier.
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approximate the ‘‘normal’’ operation state of a sensor we can mod-
el very sophisticated situations.

As can be seen in Fig. 6, the classifier’s internal structure con-
sists of one ANFIS prediction block, one error calculation block
and one internal decisional block.

Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed
by Jang (1991, 1993) and is a hybrid neuro-fuzzy system that uses
the Takagi–Sugeno-type fuzzy inference. Basically, ANFIS is a fuzzy
inference system, framed in a feed-forward neural network. Hence,
the advantages of a fuzzy system can be combined with a learning
algorithm. ANFIS architecture consists of five layers of nodes: the
first and the fourth layers consist of adaptive nodes implementing
fuzzification and defuzzification (represented by squares in the
ANFIS structure from Fig. 6), while the second, third and fifth layers
consist of fixed nodes that are implementing the fuzzy rule (P), the
normalization (N) and summation (

P
). The adaptive nodes are

associated with their respective parameters, get duly updated with
each subsequent iteration while the fixed nodes are devoid of any
parameters.

By including two intelligent approaches (neural networks and
fuzzy reasoning), the ANFIS block can achieve good reasoning in
quality and quantity. In other words we have fuzzy reasoning
and network calculation.

The ANFIS predictor, based on its input vector hANFISC(t) that
contains past measurements obtained from sensor A and current/
past measurements provided by its k neighbors:

hANFISCðtÞ¼ hAðt�1Þ���hAðt�nÞjh1ðtÞ���h1ðt�nÞj . . . jhkðtÞ���hkðt�nÞb c
ð11Þ

predicts the actual value gathered from sensor A – hA,ANFISC(t). This
prediction is subtracted from the current measurement of the sen-
sor under investigation hA(t) to obtain the error:

eANFISCðtÞ ¼ hAðtÞ � hA;ANFISCðtÞ ð12Þ

which will be exploited by the internal decision block to achieve the
classifier’s hypothesis hANFISC(t). Classifier’s decisional block oper-
ates the same as the ones included in above mentioned classifiers
(AVC, ALC, NNC and NNAC), but utilizes a different threshold: eANFISC.

The classifier has some internal parameters that had to be care-
fully determined: the threshold eANFISC and the ANFIS structure and
parameters. The threshold eANFISC is set based on trials, knowledge
and intuition of the human expert, while the ANFIS network
parameters are obtained using a combination of the least-squares
method and the backpropagation gradient descent method (Math-
Works, 2002).

The training process of this classifier is very computationally
intensive. To make a reasonable compromise between model com-
plexity and computing time, we chose to use only two measure-
ments from each sensor:

hANFISCðtÞ¼ ½hAðt�1ÞhAðt�2Þh1ðtÞh1ðt�1Þ . . .hkðtÞhkðt�1Þ�: ð13Þ

The ANFIS based classifier can be used as a part of our EBS only after
n time samples, this period being necessary to populate all compo-
nents of the input vector hNNC(t) with real measurements.

4. Decision block

The ensemble decision block is in charge of two tasks: (a) to
provide a confident decision of ‘‘reliable’’ or ‘‘unreliable’’ regarding
each and every sensor measurement; and, (b) to offer a trustwor-
thy estimation of the measurement value when a value provided
by the sensor is considered to be affected by an anomaly.

Taking the ensemble final decision can be efficiently imple-
mented using the weighted majority voting algorithm (Littlestone
& Warmuth, 1994). The five classifiers provide a set of hypothesis –
hAVC(t), hALC(t), hNNC(t), hNNAC(t), hANFISC(t) e {0,1} – that are later
aggregated using a weighted majority voting scheme formularized
by the following equations:

WMVðtÞ ¼
X

i

wi � hiðtÞ ð14Þ

with hi(t) e {hAVC(t), hALC(t), hNNC(t), hNNAC(t), hANFISC(t)} and
P

iwi = 1.
The overall ensemble decision is computed using the following

relation:

hensemble ¼ roundðWMVðtÞÞ ¼
0 if WMVðtÞ < 0:5
1 if WMVðtÞP 0:5

�
; ð15Þ

where the function round(X) rounds X to the nearest integer.
The weights wi related to each hypothesis are chosen based on

simulations and experiments. In order to provide equal rights for
components based on temporal redundancy and spatial redun-
dancy we included the following restriction:

wALCþwNNACþ0:5 �wANFISC ¼wAVCþwNNCþ0:5 �wANFISC ¼0:5: ð16Þ

In case a measurement provided by the sensor under investiga-
tion is considered abnormal, the ensemble decision block offers a
reliable estimation that can replace it. This value is obtained by
averaging the estimated values of the measurement provided by
individual classifiers:

hA;trustðtÞ ¼
1
5
� ½hA;AVCðtÞ þ hA;ALCðtÞ þ hA;NNCðtÞ þ hA;NNACðtÞ

þ hA;ANFISCðtÞ�: ð17Þ

In order to prevent incorrect classifying of the ensemble compo-
nents based on autoregressive forecasts (ALC, NNAC and ANFISC),
their input values hA(t � i), when affected by anomalies, have to
be replaced by these trustworthy estimations hA,trust(t � i). The rea-
son is simple: wrong data in inputs conduct to misclassification.

5. Training and testing the ensemble

After setting the structure for each individual classifier and for
the decision block, a complex training and testing process must
be carried out to assure optimal sets of parameters (Fig. 7). This
is done using a variety of automated/nonautomated procedures
individualized for each ensemble component and relies on training
datasets obtained from two sources: computer simulation and
experimental deployments of the same type of WSNs.

The training process is undoubtedly one of the most challenging
tasks when designing an ensemble system. There are three speci-
ficities that must be carefully taken into account in the training
process of the proposed ensemble:

(a) The impact of the sensor deployment: Three of the classifiers
included in our ensemble use measurements provided by
neighboring sensors. This characteristic implies that the sen-
sor deployment (shape, distances between adjacent nodes,
etc.) is a key aspect, affecting decisively the training datasets
and, by this, the entire training process.

Fig. 6. ANFIS based classifier.
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(b) The way training datasets can be obtained: The environment
in which the WSN will be deployed is extremely complex
and, as a result, hard to simulate and predict. The training
datasets will have to approximate this intricate environment
which cannot be done using only computer simulation or
only experimental deployments. A mixture between the
two possibilities is more feasible.

(c) Assuring the classifiers diversity is a must: The training process
must guarantee the diversity of classifiers as mentioned in
Section 3. The diversity is estimated using proper metrics
that are computed during validation of the training process.
If the diversity requirements are not met the training must
be redone.

The training and testing methodology applied in the case of our
ensemble is governed by the following steps:

i. Choosing the sensor deployment shapes that will be considered:
Due to the specificity of WSN deployment procedures (aerial
scattering, manual deployment, etc.) and due to possible
existence of non-reporting sensors, the geographical place-
ment of the sensors in the field can conduct to a plethora
of configurations. From this huge number, we must select
a reasonable set that can approximately cover all the situa-
tions. For each selected sensor deployment configuration, a
set of parameters for ensemble components will be obtained
through training.

ii. Forming the training and testing datasets for each sensor
deployment shape: In order to obtain consistent training
and testing datasets, we must concentrate on two direc-
tions: development of computer simulation programs that
can model fairly accurate the environment; and, deployment
of experimental WSNs to collect relevant data from real
environments.

iii. Training the ensemble components: all the parameters of each
and every ensemble component will be obtained using auto-
mated (Levenberg–Marquardt algorithm in case of neural
networks, a combination of the least-squares method with
the backpropagation gradient descent method in case of
ANFIS) and nonautomated techniques. Obtaining the thresh-
olds for each classifier or the weights for the decision block
is based mainly on experience and intuition.

iv. Testing the trained ensemble using testing datasets and ensem-
ble evaluation based on proper diversity metrics: Each trained
ensemble is validated using independent testing datasets
(data not used in ensemble training) obtained through com-
puter simulations or using experimental sensor deploy-
ments in a real environment. In addition, the diversity of
the classifiers inside each of the ensembles is computed
using proper metrics.

v. If the testing results do not match with the desired results or if
the diversity of the classifiers is not appropriate, the training
process will be redone.

Internal parameters of the individual classifiers can be obtained
using a variety of techniques as follows: the thresholds eAVC, eALC,
eNNC, eNNAC and eANFISC are tuned based on trials, experience and
intuition, the weights of the two neural networks implied in NNC
and NNAC classifiers are computed using Levenberg–Marquardt
algorithm and the ANFIS parameters can be calculated using a
combination of the least-squares method with the backpropaga-
tion gradient descent method. A good choice for implementing
the training process is proved to be Matlab/Symulink package that
offers powerful functions for simulation, neural networks and AN-
FIS training, etc.

After training, each ensemble is subject to a testing and valida-
tion procedure, where new data are classified and diversity metrics
(Q-statistic) are computed. If the results of this validation are not
acceptable the training process must be performed once again.

5.1. The link between the training process and the sensor deployment
in the field

The training process depends decisively on the real sensor
deployment. Because the ensemble contains classifiers that rely
on the measurements provided by adjacent sensors, the in-field
position of the sensors has a major impact in the way the ensemble
has to be trained.

In order to standardize the training procedure we chose to train
the ensemble for a set of nine different deployment shapes, pre-
sented in Fig. 8. This set covers a larger variety of deployments be-
cause it envelops the shapes obtained through rotation or/and
symmetrization.

Basically, we have to obtain the parameters for each ensemble
component corresponding to this set of deployments and to store
them in a small Access-type database or in a text file that will be
parsed any time when needed, on the base station.

When the deployment of WSN in the field is finished, for each
sensor node, a procedure to find the most appropriate shape will
be started. This can be done using shape matching procedures sim-
ilar to the ones presented in Cao, Lisani, Morel, Musé, and Sur
(2008), Belongie, Malik, and Puzicha (2002), Huttenlocher,
Klanderman, and Rucklidge (1993). When the closest shape of
the deployment is obtained, the parameters for the related ensem-
ble are loaded from the database. This way, the ensemble can work
even when some sensors are not reporting or even when sensors
are deployed nonuniformly (randomly) in the field.

5.2. Obtaining the training and testing datasets

Sensor anomalies within WSNs are hard to be discovered
mainly because the complexity of environment in which they are
deployed. Our ensemble must envelope this complex environment
in mathematical models contained in each classifier. These models
have to reflect different facets of an intricate reality and, for this,
they have to be trained using proper datasets obtained from two
independent sources (Fig. 7):

Fig. 7. Training and testing processes of the ensemble.

9092 D.-I. Curiac, C. Volosencu / Expert Systems with Applications 39 (2012) 9087–9096



Author's personal copy

– Computer simulation: In principle, the environment in which the
WSN will be deployed can be simulated to obtain relevant data
for training and testing the classifiers, but this action is highly
problematical due to the complexity of involved phenomena.
For this reason, the computer simulations are error prone and
cannot be the only source for training and testing datasets.

– Experimental deployments: A relevant source of training and
testing datasets is represented by experimental deployments
of WSNs in similar environments. Although, the real environ-
ment is hard to be replicated, data obtained from experimental
deployments are relevant, but sometimes statistically
inefficient.

By combining information provided by these two sources, con-
sistent training and testing datasets can be formed.

5.3. Metrics to estimate the diversity of classifiers

In order to quantitatively evaluate the diversity of classifiers,
several metrics have been defined (Kuncheva & Whitaker, 2003;
Polikar, 2006). Among them, the pairwise metrics defined between
two classifiers are the simplest. In our case, the ensemble incorpo-
rates T = 5 classifiers, so there is a need to compute T(T � 1)/2 = 10
pairwise heterogeneity metrics, and then to obtain the overall
diversity of the ensemble by averaging these pairwise metrics.

Given the hypotheses hi and hj provided by classifiers i and j, we
can define four probabilities (a, b, c and d) as presented in Table 1:
a – the probability of the occurrence of a case in which both hi and
hj hypotheses are correct, b – the probability of the occurrence of a
case in which hi hypothesis is correct and hj hypothesis is incorrect,
and so on. Evidently, a + b + c + d = 1.

Based on these probabilities we can compute the Q-statistic, an
indicator that is intuitive and simple to implement (Kuncheva &
Whitaker, 2003):

Qi;j ¼
ad� bc
adþ bc

; ð18Þ

Q has positive values if the same instances are correctly classified by
both classifiers and negative values, otherwise. Maximum diversity
is obtained for Q = 0.

The overall Q-statistic indicator of the ensemble will be com-
puted using the following formula:

Qensemble ¼
1

npairs

X
jQ i;jj ¼

2
TðT � 1Þ

X
jQi;jj; ð19Þ

where T represents the number of classifiers included in the ensem-
ble, and |Qi,j| represents the absolute value of Qi,j. Qensemble e [0, 1]
and has to take values as close as possible to zero to meet the
requirement of classifiers diversity. Otherwise, the trained ensem-
ble cannot pass the testing process and must be retrained.

6. Implementation and case study

For validating the above concept and related methodologies we
performed a series of studies using a WSN designed for measuring
the temperature in an indoor environment. Our experimental sen-
sor network is composed of nine Crossbow-Iris nodes equipped
with MTS310 sensors boards which report the measured values
through a gateway (MIB520CB) to a laptop-class device where
our software modules can efficiently operate.

All the programs were developed in Matlab/Simulink mainly
because of its strong capabilities within the fields of recursive
parameter estimation, neural networks and ANFIS related tech-
niques. Basically we developed two different programs, one related
to training and testing process where the parameters of the EBS are
tuned for fulfilling the expectations and one for on-line sensing
anomalies discovery that implements the trained ensemble of
classifiers.

The datasets for training and testing were obtained from two
different sources, experimental WSN deployment and computer
simulation, to cover a wider variety of environmental heat-transfer
related phenomena.

Our indoor WSN deployment has the configuration depicted in
Fig. 9, where the temperature can be intentionally perturbed using

Fig. 8. Training deployment shapes.

Table 1
Relationship between a pair of classifiers.

hj is correct hj is incorrect

hi is correct a b
hi is incorrect c d

Fig. 9. Experimental indoor WSN deployment.
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either mobile air conditioning units (affect groups of sensors with
heating/cooling waves), either a heat lamp (affects a single sensor
by increasing the temperature in its immediate vicinity).

Computer simulation is another source of training/testing data-
sets. We started from the heat equation which describes the distri-
bution of heat (or variation in temperature) in a given region over
time. For a function u(x,y, t) of two spatial variables (x,y) and the
time variable t, the heat equation with peak p(x,y) as the source
is as follows:

Table 2
Configuration of the training and testing datasets.

Package
number

Time
(min)

Node NW (�C) Node N (�C) Node NE (�C) Node E (�C) Node SE (�C) Node S (�C) Node SW (�C) Node W (�C) Node A (�C)

. . .

3 86 23.32 23.28 23.12 23.31 23.31 23.07 23.26 23.21 23.18
4 0 18.32 18.28 18.27 18.17 18.30 18.27 18.29 18.27 18.19
4 1 18.74 18.42 18.41 18.35 18.29 18.32 18.39 18.52 18.30
4 2 19.32 19.03 18.70 18.61 18.32 18.48 19.01 19.23 18.69
. . .

Table 3
Structure of the training and testing datasets.

Package number Destination Number of time samples Number of abnormal functioning samples Source

1 Training 127 15 Real WSN
2 Training 226 32 Real WSN
3 Training 87 12 Real WSN
4 Training 320 63 Computer simulation
5 Training 342 45 Computer simulation
6 Training 287 42 Computer simulation
7 Testing 79 14 Real WSN
8 Testing 162 23 Real WSN
9 Testing 154 15 Computer simulation

10 Testing 303 41 Computer simulation

Table 4
Pairwise Q-statistics between the five classifiers.

Q-statistics AVC ALC NNC NNAC ANFISC

AVC 1.00 0.82 0.86 0.84 0.86
ALC 0.82 1.00 0.79 0.91 0.89
NNC 0.86 0.79 1.00 0.82 0.90
NNAC 0.84 0.91 0.82 1.00 0.86
ANFISC 0.86 0.89 0.90 0.86 1.00
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Fig. 10. Temperature variations for node A and its NW, E and S neighbors.

Table 5
Correct, anomalous and estimated values for the sensor A.

Time (min) 10 20 40 60 70 71 72 90 100 105 120 130 140 145 150

Measurements for sensor A without
anomalies (�C)

19.43 18.98 17.22 19.57 19.58 19.35 19.06 17.15 18.33 18.34 17.33 18.39 19.75 19.89 19.11

Measurements for sensor A with
anomalies (�C)

18 20 16 21 18 20 17 18.5 17 19.5 16 19.5 18 21 17

Estimated values (�C) 19.51 18.80 17.29 19.47 19.40 19.17 18.87 17.34 18.23 18.39 17.22 18.39 19.71 19.74 18.96
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@u
@t
¼ a � @2u

@x2 þ
@2u
@y2

 !
� pðx; yÞ: ð20Þ

We simulated this equation in Matlab (PDEToolbox) with different
parameters to model diverse dynamics of the heat in the 2D envi-
ronment where the sensor nodes are placed. In order to introduce
erroneous values, we changed deliberately some of the temperature
values near the node under investigation, at random moments in
time.

For our case study, we considered all the weights of the EBS
decision block to be 0.2 and the thresholds of the individual classi-
fiers to be 0.35 �C.

Due to the way abnormal activity is discovered in our method-
ology, the datasets are not composed of independent values, but of
packages of values obtained for different consecutive moments in
time to catch the dynamics of the environment. For this reason
the datasets for training and testing are structured as in Table 2
(neighboring nodes of the sensor A are individualized using their
relative position described by cardinal and intercardinal direc-
tions: e.g. NorthWest – NW, East – E, etc.), where a package is rep-
resented by a number of measurements reported at successive
moments in time.

The training datasets included six packages, half of them ob-
tained through computer simulation and half obtained using the

experimental WSN deployment. The testing datasets consisted of
only four packages, two obtained from the real deployment and
two through computer simulation (Table 3).

In the training process we imposed that the Q-statistics be-
tween every two classifiers to be less then 0.91 and the overall
Q-statistics obtained using Eq. (19) to be under 0.87. These goals
have been achieved: the trained and validated ensemble reported
an overall Q-statistics of 0.855, while the pairwise Q-statistics for
the five classifiers are presented in Table 4.

The obtained results prove the efficiency of our ensemble based
methodology, in the sense that the ensemble categorized accu-
rately 99.71 of the situations and the best individual classifier in
terms of results (ANFISC) had 97.99%, while the worst individual
classifier (AVC) had 91.26% accuracy.

To show how our EBS works, in Fig. 10 we presented the testing
dataset package number 9, where the values related to sensor A
have been intentionally modified to simulate anomalies at 15 in-
stances in time (t = 10, 20, 40, 60, 70, 71, 72, 90, 100, 105, 120,
130, 140, 145, 150), according to Table 5.

The estimated temperatures for the sensor A done by three of
our five classifiers (hA,AVC(t), hA,NNC(t), hA,ANFISC(t)) in comparison to
the original sensor A time series (without anomalies), are
presented in Fig. 11, while the overall decisions taken by the
ensemble are depicted in Fig. 12, with the remark that for the first
six instances in time the decisions were taken only by the average
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Fig. 11. Estimations of the sensor A temperature done by the AVC, NNC and ANFISC classifiers.
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Fig. 12. The overall decision provided by the EBS.
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based classifier due to the reasons mentioned in Section 3 (the
necessity to populate input vectors for ALC, NNC, NNAC, ANFISC
classifiers with real measurements and the initial convergence of
ALC).

The estimated values proposed by our ensemble to replace the
abnormal measurements are presented in the last line of Table 5.
By comparing the sensor A unperturbed measurements with the
estimated values, it results a mean absolute error of only
0.118 �C and a maximum absolute error of 0.19 �C obtained at
t = 72 and t = 90, confirming once again the preciseness of our
methodology.

7. Conclusions

It is in the human nature to ask for two, three or maybe more
different authorized opinions before taking a significant decision.
This human characteristic was transferred to the domain of artifi-
cial intelligence through the concept of ensemble based system,
producing relevant results in a large variety of domains. Being
exposed to numerous risks, WSN often use complex decisional sys-
tems for controlling their lifecycle, for processing measurement
data or even for dealing with malicious security attacks. Our paper
presents a novel perspective upon the sensing anomaly detection
in wireless sensor networks by involving an ensemble of five
carefully selected binary classifiers. Each of these five classifiers
comprises a dynamical model of ‘‘correct behavior’’ of the sensor,
estimated based on past measurements provided by the sensor
itself or by neighboring sensors. The algorithms involved vary from
a simple average computing to complex neural or ANFIS networks
assuring the desired diversity of the classifiers to implement an
efficient decision making system. Furthermore, using the power
of the same ensemble we can precisely estimate the correct value
of any measurement affected by sensing anomalies.
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