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Abstract
Wireless Sensor Networks gradually became a mature technology that enabled the 
implementation of a large number of critical applications. However, the integration 
of such networks in much more complex systems, such as IoT, still poses a major 
challenge. In this paper we present a viable solution to accomplish such a difficult 
task by using MQTT-SN to integrate critical real-time WSNs into an IoT platform. 
The core of our work is a platform independent real-time driver for MQTT-SN along 
with a communication architecture to enable the integration of low end devices into 
an MQTT network using MQTT-SN. We also describe a comprehensive practical 
demonstration using real hardware modules that validates our claimed solution.
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1  Introduction

The Edge Layer of an Internet of Things (IoT) platform is represented by many small 
devices low on computational, power and communication resources that handle 
the basic sensing and control tasks [1, 2] and are monitored and managed by the 
Fog and Cloud Layers [3, 4]. Such devices have evolved in terms of both numbers 
and hardware resources [5] being able to perform more sophisticated tasks and use 
modern communication protocols such as MQTT or CoAp that rely mainly on the 
TCP/IP stack [6].

However, integrating already existing Wireless Sensor Networks (WSNs) into 
an IoT platform still poses a challenge mainly because of the lack of hardware 
resources of the nodes. Furthermore, these devices rely on battery power which 
limits their communication capabilities thus standard IoT protocols based on TCP/
IP are not suitable which implies using other solutions such as MQTT-SN [7]. An 
even greater challenge is to integrate WSNs that have specific time constraints when 
implementing real-time applications [8].

MQTT (Message Queuing Telemetry Transport) is a communication protocol 
based on the publish/subscribe paradigm designed especially for IoT. The protocol 
is organized in a Client–Server manner where the client part is represented by the 
IoT nodes and the server part is represented by a so-called broker which governs the 
whole network [9].

The MQTT protocol is localized at the application layer according to the OSI ref-
erence model [10] having the TCP/IP protocol as a transport under-layer. A simpli-
fied architecture of the MQTT protocol is presented in Figure. 1

Fig. 1   MQTT general architecture
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Being designed for IoT, the MQTT protocol is restrictive in requiring TCP/IP, 
which is unsuitable when applying this protocol for a sensor or wireless sensor 
network [11]. In such networks, the nodes have few resources in terms of memory 
or computational power and are usually battery-powered thus making the usage of 
TCP/IP almost impossible [12].

To solve some of these issues, a lighter version of the MQTT protocol was 
designed to allow MQTT usage on devices low on resource and battery-powered. 
The new version of the protocol designated as MQTT-SN (MQTT Sensor Networks) 
[13] allows the integration of sensor networks and wireless sensor networks into an 
MQTT network thus enabling access into the IoT paradigm.

The MQTT-SN may be transported by any communication protocol other than 
(but not excluding) TCP/IP such as 6LoWPAN [14], UDP [15] or ZigBee [16]. The 
messages of MQTT-SN are lighter and shorter than those of the classical MQTT but 
retain the same functionality. The most important differences between MQTT and 
MQTT-SN regarding lighter messages are the following [9, 17]:

•	 The connect message is split into three other messages where one is mandatory, 
the rest being optional

•	 The REGISTER-REGACK messages are introduced to replace topic names with 
numerical topic IDs, thus significantly reducing message size when addressing 
topics

•	 WILL messages and topics may be changed any time after a connection has been 
established

•	 PUBLISH-PUBACK will only use a topic ID or short topic name thus leaving 
more space for actual data

•	 SUBACK message returns the numerical topic ID of the topic name initially sent 
by the SUBSCRIBE message

•	 A DISCOVERY message is introduced for a gateway to announce its presence to 
the potential clients

Besides these changes, for a lightweight sensor network to be integrated into 
a MQTT network an additional element is needed. This additional element is 
represented by the MQTT-SN gateway which makes the interfacing and connection 
between the sensor network and the MQTT broker. The connection between the 
gateway and the sensor network is handled by the existing communication interface 
of the network which transports the MQTT-SN messages. The connection between 
the MQTT-SN gateway and the MQTT broker is implemented using the TCP/IP 
protocol stack.

Practically, the MQTT-SN protocol allows the integration of a classical wireless/
wired sensor network with a modern MQTT network designed for the latest IoT 
paradigm. Such an integration takes advantage of the features of the wired/wireless 
sensor networks such as real-time operation, low-cost, and low power as well as 
the advantages of the modern IoT networks such as integrability, scalability, and 
security [18].

Another important aspect is that the nodes in such a hybrid network 
implementation are visible to the end user individually without any limitations. 
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Finally, with the help of MQTT-SN, the user may integrate an already existing WSN 
network with an IoT network.

The MQTT-SN solutions for the client nodes are not fully implemented even 
though they are available in many forms and many programming languages. Usually, 
for MQTT-SN, there are implementations available only for the main messages 
supported by the protocol but no actual working flow is defined. Many of the 
timings are also not implemented. Practically, without the main flow of the protocol 
the available implementations cannot be integrated into a working environment. The 
main flow must be implemented by the user in most of the available solutions.

In this paper, we propose an IoT architecture at Edge Layer that transparently 
integrates different wireless sensor networks using MQTT and MQTT-SN as 
application layer communication protocols. We also provide the design and 
implementation for the MQTT-SN communication protocol, including a platform-
independent, real-time driver for MQTT-SN. With our solutionmode, different 
independent sensor networks that use different communication platforms will be 
able to interoperate and be integrated into a modern IoT network.

As we discuss in the Related Work section and from the best of our knowledge 
there is no actual solution for using MQTT-SN in critical, time-bounded real-time 
systems thus our main contribution is to provide such a functionality. Furthermore, 
we also present a novel IoT architecture which enables classical Real-Time Wireles 
Sensor Networks to be integrated into this paradigm.

The following is a summary of our main contributions:

•	 We provide a design for a hybrid IoT architecture at Edge Layer that transparently 
integrates different WSNs using MQTT and MQTT-SN communication 
protocols

•	 We present our design and implementation of the communication flow between 
clients and gateways.

•	 We offer a platform-independent, real-time driver for MQTT-SN
•	 We describe our implementation and demonstrate the effectiveness of our 

solution on real hardware platforms and present the experimental evaluation

The rest of the paper is organized as follows. A discussion regarding the related 
work is presented in Sect. 2 before describing our proposed network architecture in 
Sect. 3. The core of our work, the MQTT-SN real-time driver, is presented in Sect. 4 
while a practical demonstration of the implementation on real hardware platforms is 
described in Sect. 5. The final Section concludes this paper.

2 � Related Work

Regarding the implementation availability of MQTT, there are many available 
solutions for it. The implementations for MQTT are numerous supporting many 
programming languages and operating systems [19].

However, the situation is not the same for MQTT-SN. In this case, there are 
limited implementations for MQTT-SN. The gateway is usually found implemented 
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in many programming languages but the situation is not the same on the client side. 
A small step towards the integration of MQTT-SN was taken in [20] where authors 
explore this possibility but only using a simulation environment such as Cooja from 
ContikiOS. The same principle was adopted by the authors in [21] where MQTT-SN 
was evaluated along CoAP using the same simulation environment.

The MQTT-SN Protocol is not only integrated and evaluation in simulation 
environments, thus many implementations are currently available and documented 
properly. One such solution is available for the popular Arduino platform to be 
integrated in small sensing embedded projects [22]. The Zephyr Project also offers 
support in this direction providing their own solution for MQTT-SN for more 
complex embedded systems [23].

Another much more complex solution is available to be used in Linux based 
operating systems offering full suport along with a gateway to provide integration 
with an MQTT Broker [24]. Similar to this solution, the HiveMQ enterprise-ready 
MQTT platform [25] provides some limited support for MQTT-SN on both client 
and gateway side.

In many such solutions, the driver is usually implemented in a blocking manner 
which is not suitable for critical real-time systems. Furthermore, the transport 
protocol is usually hard-coded to UDP, thus limiting usage and portability to low-
rate devices.

On the same principle as our proposed architecture, a hybrid solution of MQTT 
combined with ZigBee is already available and very popular in the home automation 
industry. Such a solution, represented by Zigbee2MQTT [26] acts similar to an 
MQTT-SN gateway and enables sensors and actuators implemented mainly using 
low rate and low-cost devices with ZigBee communication capabilities to be 
integrated into home automation solutions [27] where both power efficiency and 
network security are necessary [28, 29]. The drawback in this situation is that only 
supported Zigbee2MQTT devices may be integrated into the network. A list of such 
devices is provided, but without offering a universal solution, thus the addition of a 
new device implies a long process of integration into the system which is done by 
the developer team.

The relatively recent endeavours of further development of the MQTT-SN 
protocol are also tackling IoT-specific communication security problems. Security 
within MQTT-SN is recognized as an open issue [30, 31], prompting ongoing 
research aimed at enhancing its security frameworks without compromising 
its efficiency and low resource requirements. Currently, MQTT-SN is actively 
supported across various sectors such as smart city [12] or agriculture [32], 
reflecting its utility and confidence in its evolving security measures.

Different security solutions were proposed for enhancing MQTT-SN: like an 
intrusion detection system [30], several security mechanisms for authentication, 
access control, end-to-end security [33] or message encryption [34].

Other MQTT-SN extensions aim at improving the quality of communication in 
terms of latency: e.g. by controlling the Quality of Service in response to the status 
changes in the underlying network [15] or by providing real-time communication 
services, extending the message model by adding real-time attributes as priority and 
deadline to certain messages [35].
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3 � Hybrid IoT Real‑Time Network

The main outcome of our work is a hybrid network of heterogeneous devices 
interconnected in order to achieve a single Internet of Things platform. We have 
interconnected four different types of networks as depicted in Fig. 2 using MQTT 
and MQTT-SN as application layer protocols.

The hybrid network is mainly based on MQTT under the coordination of 
an MQTT Broker. The classic MQTT network provides the base for the whole 
architecture being compatible with any device that can connect to an MQTT 
network using TCP/IP as a transport protocol. However, such a network is not 
suitable for low-rate devices, thus the TCP/IP protocol cannot be adapted to run 
on such devices.

In order to add the low-rate devices to the existing MQTT network we made 
use of the MQTT-SN protocol and adapted it accordingly. The interconnection 
was done by adding an MQTT-SN gateway by adapting the solution from 
Eclipse Paho [36, 37]. We modified the MQTT-SN gateway from Eclipse Paho to 
simultaneously coordinate multiple and different types of sensor networks such 
as: 

Fig. 2   Hybrid MQTT communication architecture
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1.	 HopeRF Network - a low-rate, non-real-time wireless sensor network built using 
low-rate, low-power hardware with low computational and memory resources. 
Thus, such a network is usually very hard to integrate into an existing IoT network.

2.	 ZigBee Wireless Sensor Network - a soft real-time wireless sensor network using 
wireless modules along with the ZigBee [38] stack as communication interface. 
We consider this network to function in a soft-real time manner whe

3.	 Real-Time Wireless Sensor Networks - a hard real-time wireless sensor network, 
using also the ZigBee stack as communication interface on networks nodes having 
a hard real-time software component.

The real-time aspects of these networks is considerred at a node level where the 
communication driver along with the other tasks may or may not function in a 
real-time manner with strict time constraints. The firmware of the node of the 
HopeRF network (1) is written in a non-real-time manner with blocking and non-
deterministic code. The system is not capable of real-time support from a hardware 
or software point of view.

The ZigBee Wireless Sensor Network (2) is capable of real-time constrants 
but many software modules are not designed in a deterministic manner which 
limits their real-time capability. In this case we consider that only soft real-time is 
supported where deadline misses of tasks in the node’s firmware are permitted thus 
affecting only the performance of the system.

The nodes of the the Real-Time Wireless Sensor Network (3) were designed 
to fully support hard real-time constraints at a task level. The firmware is fully 
predictable without using any blocking statements having a Hard Real-Time Task 
Execution environment based on FreeRTOS [39] which guaranteed no deadline 
misses at a node level.

The three wireless sensor networks enumerated above were integrated with the 
help of our real-time, platform-independent driver for MQTT-SN based on the 
implementation provided by Paho Eclipse [22]. This part of our work is presented in 
section 4 of this paper.

4 � MQTT‑SN Real‑Time Platform Independent Driver

This section aims at presenting the most important part of our work: our real-time 
solution of a real-time software module for MQTT-SN for the client devices, and the 
sensor nodes.

Our client implementation is based on the source code provided by Eclipse 
Paho [22] which offers only a base code for the message definitions and data 
encapsulations encoding and decoding. The documentation limits to the usage over 
network sockets in Linux-based operating systems [40].

Our implementation provides an MQTT-SN task to be executed in a real-time 
environment that can achieve strict time constraints. The task implementation is 
non-blocking with a predictable flow. Our solution may also be executed in a non-
real-time environment.
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The main flow of the driver is concentrated on the three main states of the 
MQTT-SN protocol that we defined in our solution:

•	 State MQTT-SN DISCONNECTED – the client is disconnected from the 
broker and no data exchange is possible except for the packets that may be 
received in a connection-less state such as ADVERTISE, SEARCHGW,... etc.

•	 State MQTT-SN CONNECTING – the client is in the connecting process. The 
MQTT CONNECT packets were sent by the client and it waits for a CONNACK 
confirmation from the broker.

•	 State MQTT-SN CONNECTED – the client is connected with the broker and a 
full message exchange is permitted from this point on.

The main flow of the protocol implementation is based on the state transitions 
presented in Fig.  3. The main state transitions are determined either by message 
exchange or by some strictly defined protocol timings.

The protocol timings are ensured using real-time software timers [41, 42]. The 
software timer’s task needs to be executed by a real-time operating system with strict 
time parameters in order to provide accurate timing. However, in the case where 
such a real-time environment is not available, the software timer’s main task may be 
executed periodically by using an interrupt servicing routine.

The software timers are used to implement three different timings required by the 
protocol:

•	 Timeout timer – this timer implements the timeout which is defined here as the 
maximum period of time between a request and a response. If this timer expires 
the timeout procedure is initiated.

•	 Back-off timer – the timer implements the back-off time, which is a period of 
time in which the client must not initiate any transmissions. Any transmission 
during the back-off time is rejected by the broker and eventually, the connection 
gets terminated.

Fig. 3   MQTT-SN general state 
transitions
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•	 Ping timer – this timer implements the period of time between the exchange of 
ping messages and has the role of keeping the session alive

The actual values of the timings implemented by the three timers are defined in 
accordance with the broker configuration.

The transitions defined in Fig. 3 that are determined either by the timings defined 
above or by event occuring upon MQTT-SN package exchange. A timeout event 
is generated when a response to a request is not received before the timeout timer 
expires. In such a situation the transaction is resumed but not before checking if 
a maximum number of consecutive timeouts were generated. Such a situation 
may suggest that the connection between the client and the gateway/broker is lost 
thus implying a transition to MQTT-SN DISCONNECTRED state. An internal 
variable is used to keep the consecutive number of timeouts. This variable is reset 
at each received packet. The transition to MQTT-SN CONNECTING is determined 
immediately after the back-off timer expires insuring the during this period no 
package exchange is permitted. In this state, the MQTT-SN client initiates the 
procedure responsible for establishing the connection with the MQTT broker 
through the MQTT-SN gateway. A transition to the MQTT-SN CONNECTED state 
will thus result after the connection was succesfully established.

Another important aspect is that when a timeout occurs, the current transaction is 
not immediately resumed. Before retrying a failed transaction, the client must first 
wait a back-off time during which it must be silent. Such behaviour is also defined by 
the broker and is mandatory.

The main flow of the protocol is not very complex but it needs to take some 
considerations into account:

•	 The timings and the protocol message exchange needs to be strictly fulfilled
•	 The time period of the protocol’s task execution needs to be in accordance with 

the communication interface (at least two times faster than the maximum period 
of time between packet reception from the lower levels)

The main protocol flow will be presented in two phases: the connecting and 
connected phases. The connecting phase of our MQTT-SN implementation is 
designed according to Fig. 4

The flow begins with a back-off waiting time in order to ensure the requested 
silence in case of a possible previous error. After the back-off waiting state the flow 
goes into state MQTT-SN DISCONNECTED. In this state, the client must send an 
MQTT Connect request to the broker to initiate a connection. Successful transmis-
sion of a connect request will change the flow into state MQTT-SN CONNECTING. 
However, if the transmission is not successful, the flow will be restarted with the 
back-off waiting procedure.

In the MQTT-SN CONNECTING state, the client must only wait for a 
response from the broker containing a CONNACK message within the defined 
timeout period. If the timeout limit is reached then the MQTT flow will be reset 
with the back-off wait period. If a CONNACK message is received from the bro-
ker the client MQTT flow goes into MQTT-SN CONNECTED state. The client 
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will remain in this state until either a DISCONNECT message is received from 
the gateway/broker, or the client wants to disconnect from the gateway/broker, or 
in case the maximum number of consecutive timeouts is reached.

In the MQTT-SN CONNECTED state, the flow is responsible for three 
operations: keeping the connected session alive by sending periodic ping requests 
(PINGREQ), processing incoming MQTT-SN messages from the broker, and 

Fig. 4   MQTT-SN task main flow connecting phase
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processing local events for sending MQTT-SN messages to the broker. The flow 
is designed as presented in Fig. 5.

Immediately before commuting into the MQTT-SN CONNECTED state, the ping 
timer is started. This timer dictates when a ping request (PINGREQ) needs to be sent 
by the client to the gateway/broker. This ensures that the session is being kept alive. 
If the ping procedure is not implemented, the client is automatically disconnected by 
the broker, thus this procedure is vital for communication.

Our version of the MQTT-SN Client implementation manages the MQTT-SN topics 
by dividing them into local and remote topics. The local topics are the topics that are 
exported to the broker by issuing a SUBSCRIBE message followed by a PUBLISH 
message each time the payload changes. The remote topics are the topics that are 

Fig. 5   MQTT-SN task main flow connected phase



	 Journal of Network and Systems Management           (2025) 33:37    37   Page 12 of 34

imported from the broker by issuing a REGISTER message and updating their value 
each time a PUBLISH message arrives from the broker. The data structure of a topic 
(remote or local) is described in Listing 1.

The structure members have the following meanings:

•	 topic_id – the numerical ID assigned to a topic, identified initially by its name, 
either in the REGISTER or SUBSCRIBE procedure.

•	 register_packet_id – the numerical ID of the packet that initiated the REGISTER 
or SUBSCRIBE procedure. This ID will later be used to confirm the procedure by 
REGACK or SUBACK packages.

•	 payload – the actual data payload transported usually by a PUBLISH message
•	 payload_length – the length of the payload in bytes
•	 flag_qos – a bitfield having the following structure:

The flags described in Table 1 have the following meaning:

•	 valid – states that the current record of the MQTT_SN_TOPIC structure is valid and 
that all the fields are correctly assigned.

•	 registered – states that the current topic was successfully registered or subscribed.
•	 ackNeeded – states that the current topic is the REGISTER or SUBSCRIBE 

process and a corresponding REGACK or SUBACK is needed

Table 1   Bitfield description of 
flag_qos

bit number 7 6 5 4 3 - 0

description valid registered ackNeeded newPayload QOS
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•	 newPayload – states that a new data payload was received for the current topic 
(which was successfully registered or subscribed)

•	 QOS – the QOS level for the current topic

The values of the flags in the bit-field described in Table 1 are limited to a certain 
set as described in Table 2.

Being designed for a real-time system, the local and remote topics are stored in 
statically allocated arrays and are accessed by the other tasks and application layers 
only through dedicated APIs.

The next part of the connected phase of the flow is to process any received 
MQTT-SN message from the gateway/broker. At each received message, the timeout 
timer is being reset. The implementation currently handles the following received 
MQTT-SN messages:

•	 PINGRESP – ping response - this packet states that a previously sent PINGREQ 
was acknowledged by the broker

•	 ADVERTISE – this packet is used by the gateway to announce its presence. 
Currently, the gateway is hard-coded thus this message is decoded but ignored

•	 REGACK – this message is received for a previously transmitted REGISTER 
request. In this case, the flow will mark the local topic identified by the received 
topic_id as registered. From this point on, the marked topic is registered by the 
broker and its value may be updated at any time by using a PUBLISH message

•	 PUBACK – this message is received as a response for previously sent PUBLISH 
request to update the value of a local topic. In this case, the local topic’s new 
payload is marked as acknowledged

•	 SUBACK – this message is received as a response to a previously sent 
SUBSCRIBE request to subscribe to a remote topic. This message practically 
confirms the subscription to a remote topic and from this point on, the value for 
this topic will receive updates from the broker.

•	 PUBLISH – This message is sent by the broker for a subscribed remote topic to 
signal a value update. The flow will update the locally stored value of the remote 
topic with the value received with this message.

In the case of the reception of messages such as REGACK, PUBACK and SUBACK 
this marks the end of the transaction: REGISTER-REGACK, PUBLISH-PUBACK 
and SUBSCRIBE-SUBACK. This state is marked internally by using the variable 
transaction_in_progress. In the case of the reception of REGACK, PUBACK and 
SUBACK, the transaction_in_progress variable is set to false.

The internal tasks to be executed here, depicted in Fig. 6, are the following (in 
this order): 

1.	 Find the first remote topic that has a pending PUBACK to be sent for a previously 
received PUBLISH message.

2.	 Find the first remote topic that needs to be subscribed by sending a SUBSCRIBE 
message.
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3.	 Find the first local topic that has not been registered in order to obtain a numerical 
topic ID and issue a REGISTER request if needed

4.	 Find the first local topic that has a new payload and the value has to be published 
by sending a PUBLISH message

5.	 Check if the ping timer has expired and a PINGREQ message needs to be sent

Each of these operations is executed only once within one execution of the main 
task. For each execution, the variable transaction_in_progress is marked as true 
and the timeout timer is restarted. Finally, the flow returns to the beginning of the 
MQTT-SN CONNECTED state.

Fig. 6   MQTT-SN internal tasks flow
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5 � Implementation and Experimental Results

We implemented our real-time MQTT-SN driver on various real hardware-soft-
ware platforms. We built the architecture depicted in Fig.  2 and described in 
Sect. 3.

The Low-Rate Wireless Sensor Network is implemented using devices 
low on memory, power and computational resources. A HopeRF RFM12B 
Transceiver represents the wireless communication interface for these devices 
citehoperfrfm12b connected via SPI to the board’s processor, an ARM7TDMI-S 
[43] microcontroller, an NXP LPC2103 chip [44]. Our custom implementation 
of such modules is presented in Fig. 7b. The software component is represented 
by a trivial non-real-time implementation, thus other solutions (i.e. a real-
time operating system) are not suitable for such hardware. This limits the 
implementation of using a classical main loop using blocking operations along 
with the processor’s interrupt system. The main characteristics of the test 
environment for this type of node are presented in Table 3.

The ZigBee Wireless Sensor Network is built using other custom-made 
modules (Fig. 7a). We implemented these modules using a similar ARM7TDMI-S 
processor, namely an NXP LPC2148 [45], which drives a Digi XBee Series 2 

Fig. 7   Hybrid MQTT-SN nodes

Table 3   Low-Rate WSN test parameters

Parameter Value Parameter Value

CPU Frequency 92.16 Mhz Maximum RF packet Length 64 bytes
Back-off time 3000 ms Transaction timeout 2 s
Keep alive transmit period 5 s Keep alive timeout 100 s
Maximum consecutive timeouts 3 Data payload update period 1 s
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RF module [46] via a UART interface. The software component is based on our 
hybrid real-time solution [47] where we took advantage of both the FreeRTOS 
operating system [48] and the stability of jitterless execution provided by the 
HARETICK (Hard Real-Time Compact Kernel) [49]. The two operating systems 
manage a set of tasks that provide a predictable real-time by using specific time 
constraints as described in Table 4.

The XBee driver implementation [50] ensures a firm real-time communication 
with the ZigBee network. The driver is represented by 5 tasks XBEE1-4 and XAPP 
while the MQTT-SN driver is implemented by the MQTT task as specified in 
Table 4. The test characteristics for the ZigBee WSN nodes are described in Table 5.

Furthermore, we integrated an already existing real-time network into the hybrid 
solution we presented in this paper to adapt our environment to the IoT paradigm. 
Such a network implements a real-time robotic collaborative environment [51] 
meant for time-critical applications. The nodes of the networks are represented by 
the entity designated as WIT (Wireless Intelligent Terminal) which is built as a 
multi-board and multi-processor architecture with a hard real-time communication 
protocol stack (PARSECS_RT Stack) ensuring the intra-board communication [52].

The WIT, with a prototype presented in Fig. 7c, is a multifunctional node driven 
by a motherboard implemented with the help of a Raspberry PI3 module [53]. 
The communication is also implemented by an XBee Series 2 module attached 
to a dedicated communication board with a similar architecture as the previously 
described. However, the functionality of the whole node is dictated by the 
motherboard which implements the whole logical flow of the WIT, and thus hosts 
our MQTT-SN driver as one of the running tasks. The main operating system is 
ArchLinux [54] along with the LitmusRT add-on meant to provide higher real-time 
flexibility for the Linux kernel. The real-time tasks that are running in the system 
using the LitmusRT scheduling add-on along with their timing are described in 
Table  6. To ensure a strict hard-real time behavior, each task was assigned to a 
single different reservation pool [55].

The test characteristics for the Real-Time ZigBee WSN nodes are described in 
Table 7.

The values chosen in Tables 3,5 and7 are mostly dependent on the communication 
interface. The Maximum RF Packet Length parameters states the maximum value of 
a data packet supported by the communication interfaces which is 64 for the HopeRF 
modue and 96 for the ZigBee Series 2 modules. Regarding the HopeRF network, 
the values in Table 3 are a little more aggressive than the values for the other two 
networks mainly because the instability of the HopeRF network. This characteristic 
of the low-rate HopeRF network implies that the nodes are prone to more packet 
loss than the ZigBee modules which may lead to more disconnected events. In order 
to keep the nodes connected as much as possible, the keep alive transmit period 
was decreased keeping the nodes more active on the network. Furthermore, in order 
to provide a faster reconnection in case of a disconnect situation the maximum 
consecutive timeouts value is much more strict than the value used for the other 
network types. One can easily observe that these values are more permissive for the 
ZigBee networks because of the increased stability of such networks. However, the 
data payload update period was arbitrary taken.
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The rest of the network is a classical MQTT over TCP/IP implemented using 
commonly used smartphones and tablets running various versions of Android as the 
operating system.

The gateways and the MQTT broker are hosted on an Intel NUC [56]. The 
MQTT-SN gateway responsible for the HopeRF Low Rate Wireless Sensor Network 
interacts with the gateway using a dedicated adaptor having access to a HopeRF 
Transceiver as depicted in Fig. 8a. On the other hand, mainly for simplicity reasons, 
the two Zigbee networks are both handled by a single ZigBee coordinator connected 
to the gateway through an XBee Series 2 serial adapter as pictured in Fig. 8b.

The gateways and the MQTT broker are hosted on an Intel NUC [56]. The 
MQTT-SN gateway responsible for the HopeRF Low Rate Wireless Sensor Network 
interacts with the gateway using a dedicated adaptor having access to a HopeRF 
Transceiver as depicted in Fig. 8a. On the other hand, mainly for simplicity reasons, 
the two Zigbee networks are both handled by a single ZigBee coordinator connected 
to the gateway through an XBee Series 2 serial adapter as pictured in Fig. 8b.

The HopeRF Gateway Adapter is built around an NXP LPC2148 microcontroller 
[45] and interfaces with the gateway using the serial interface. The main role of 
the firmware running on the microcontroller is to manage the radio module and to 
provide a communication interface for data transfer with the gateway with minimal 
encoding as presented in Fig. 9.

The HopeRF Serial Interface Packet offers a minimum and necessary data 
encoding in order to provide simple data transfer for the gateway. When such a 
packet is received by the HopeRF Gateway adapter, the extracted data is sent using 
the HopeRF Radio module and vice-versa. The fields of the HopeRF Serial Interface 
Packet are described in Table 8.

Our solution integrates all of these nodes into a heterogeneous IoT network 
presenting it as a homogeneous network over MQTT.

In our test setup, in order to prove the functionality and effectiveness of our 
design each node publishes two topics:

•	 upt/name/< name> where < name> represents a string identifying the device
•	 upt/< name>/data where, under a topic containing the device’s name each node 

exports a number that incremented internally, identified as data

A much clearer view may be found in Table  9 where the whole test network is 
described more accurately.

Table 5   ZigBee MQTT-SN WSN node test parameters

Parameter Value Parameter Value

CPU frequency 58.9824 MHz Maximum RF Packet Length 96 bytes
Back-off time 3000 ms Transaction timeout 2 s
Keep alive transmit period 5 s Keep alive timeout 50 s
Maximum consecutive timeouts 3 Data payload update period 500 ms
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The whole process was monitored either using the mosquitto_sub [57] and 
with a graphical MQTT visualization tool such as MQTT-Explorer [58]. As pre-
sented in Fig. 10, we can identify the topics exported by each node along with 
their associated values as described in Table 9.

We have concentrated on evaluating the whole network by measuring the 
packet loss in various scenarios with the parameters described in Tables 3, 5, 7. 
For each experiment, each node initiated 2500 PUBLISH-PUBACK transactions 
and the results are presented in Fig. 11. The main reason behind this decision is 
that we wanted to establish if and how different networks could influence each 
other.

Table 7   ZigBee Real-Time MQTT-SN WSN node test parameters

Parameter Value Parameter Value

CPU frequency 1.2 GHz Maximum RF packet length 96 bytes
Back-off time 5000 ms Transaction timeout 5 s
Keep alive transmit period 30 s Keep alive timeout 60 s
Maximum consecutive timeouts 10 Data payload update period 3000 ms

Fig. 8   Gateway adapters

Fig. 9   HopeRF serial interface packet
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In order to establish a reference point, we conducted measurements to evalu-
ate the packet loss of each device individually. As expected, the results in Fig. 11a 
emphasize the low rate and unreliability of the HopeRF network in contrast with a 
much more stable situation where ZigBee is used.

During the next step, we evaluated the packet loss at the network level for each 
type of network where all the devices of the same network were included in the 
experiment. Because the HopeRF network has an extremely poor MAC level with 
no mechanisms to prevent and treat collisions, when more than one device is used, 
the instability increases as shown in Fig. 11b. However, on the ZigBee side, even if 
the packet loss slightly increases, the obvious higher performance may be observed.

We evaluated the packet loss for the whole hybrid network where all the sensor 
networks were included in the experiment, thus all functioning in a hybrid manner 
together in parallel. As it can be observed in Fig. 11c few changes in packet loss 
occurred. A behaviour change may be noticed when merging all the networks into a 
hybrid communication platform but with little negative impact.

Even though these are only preliminary experimental results, they clearly 
demonstrate a small increase in packet loss when integrating all the networks. 
This result was indeed expected and the measurements prove that this increased 
packet loss is negligible and limited. Another important aspect may be observed in 
Fig. 11b and Fig. 11c where the two different networks communicating using the 
same ZigBee infrastructure are affected by each other. Although this is expected, in 
a much practical application such a situation should not occur mainly because the 

Table 9   Experimental network description

Network Node short 
name

Node long 
name

Real-time OS Protocol Published topics

Low Rate
WSN

H1 hope-1 NO NO OS MQTT-SN upt/name/hope-1
upt/hope-1/data

H2 hope-2 NO NO OS MQTT-SN upt/name/hope-2
upt/hope-2/data

ZigBee
WSN

Z1 zigbee-
freertos-1

FRT FreeRTOS
Haretick

MQTT-SN upt/name/zigbee-
freertos-1

upt/zigbee-
freertos-1/data

Z2 zigbee-
freertos-2

FRT FreeRTOS
Haretick

MQTT-SN upt/name/zigbee-
freertos-2

upt/zigbee-
freertos-2/data

Real-Time
WSN

RZ1 wit-1 HRT ArchLinux
LitmusRT

MQTT-SN upt/name/wit-1
upt/wit-1/data

Classic
TCP/IP
Network

mqtt-1 phone-1 NO Android MQTT upt/name/phone-
1

upt/phone-1/data
mqtt-2 tablet-1 NO Android MQTT upt/name/tablet-1

upt/tablet-1/data
mqtt-3 tablet-2 NO Android MQTT upt/name/tablet-2

upt/tablet-2/data
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two networks could be completely separate having distinct networks coordinators 
communicating on different frequency channels.

Also, it can be clearly seen in Fig. 11 that no packet loss increase can be observed 
in the HopeRF network. The reason behind this behaviour is that the HopeRF 
network communicate on a completely different frequency spectrum than the 
ZigBee networks. All of this preliminary concludes that the observed packet loss in 
the ZigBee networks are not necessarily caused by our hybrid network integration 
but because of the increased communication on the same frequency channels which 
in a real application may be easily avoided.

Fig. 10   Network visualization proof using MQTT-explorer
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Fig. 11   Packet loss measurement
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It is also very important to mention that the classical MQTT network cannot be 
affected in any way by our hybrid solution, thus MQTT is transported by a different 
TCP/IP network and is managed entirely by the MQTT broker which is technically 
unaware of the existence of the MQTT-SN network. Also, the MQTT network com-
municated on a completely different platform which is not affected by any communi-
cation from a WSN.

A packet loss synthesis as presented in Fig. 12 may be used to summarise the way 
packet loss was affected when applying our solution.

In order to further analyze our solution in terms of real-time requirements, we 
continue to present in Fig. 13 the task execution timings as captured using a Saleae 
Logic Pro16 Analyzer [59] for the ZigBee MQTT-SN WSN Node. In order to obtain 
these measurements a classical software method was used: a dedicated GPIO for 
each task is toggled to logic LOW at the beginning the the execution of the task and 

Fig. 12   Packet loss synthesis

Fig. 13   Real-time task executing timings for ZigBee MQTT-SN WSN node
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to logic HIGH at the end of execution. The timing markers on the right measure the 
execution period of the tasks: marker P0 measures the period of the TIMER_SOFT-
WARE task (T_TS), marker P1 the period of XBEE1 Task, P2 the period of XBEE2 
Task, P3 the period of XBEE3 Task while P4 measures the period of the MQTT-SN 
Task. As it can easily be observed the measured values demonstrate the theoretical 
data from Table 4.

An important parameter when dealing with real-time environments is the Worst 
Case Execution Time (WCET). This parameter is normally calculated using dedi-
cated tools which are dependent on the CPU architecture. In Fig. 14 we determined 
the execution time experimentally and obtained its maximum measured value under 
the longest execution path of the driver. The obtained value may be found under 
L
MAX

 in Fig. 14.
Another crucial time parameter in this analysis is the response time of the 

driver. This parameter is experimentally determined in Fig.  15 at MQTT-SN DRV 
RESP. We considered the falling edge when the application updates the value of 
the topic upt/zgbee-freertos-1/data and the rising edge when the MQTT-SN driver 
sent the PUBLISH message to the radio interface. In the worst conditions, when the 
application task updates this value immediately after an execution of the MQTT-SN 
task this value is determined by the actual execution period of the MQTT-SN task. 
Such a condition is demonstrated by the P0 timing marker in Fig. 15. Furthermore, 
as it can be observed the response time is not constant, being dependent on the 
conditions described before, but in a real-time environment the absolute maximum 
value is crucial.

Fig. 14   MQTT-SN task execution time for ZigBee MQTT-SN WSN node

Fig. 15   MQTT-SN driver response time for ZigBee MQTT-SN WSN node
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The second waveform in Fig. 15 is represented by a PUBLISH-PUBACK trans-
action time and is designated as MQTT-SN-PUB-PUBACK. The falling edge rep-
resents the moment the PUBLISH message is sent to the radio interface and the 
rising edge determines the moment the PUBACK is received back by the MQTT-SN 
driver from the MQTT broker. Such a time parameter is highly dependent on the 
radio communication and it does not influence the timings of the MQTT-SN driver. 
The time period of this transaction is measured by P1 timing markers.

A similar analysis is required for the Real-Time WIT Node as presented in Fig. 16 
with similar execution parameters as for the ZigBee MQTT-SN WSN Node in order 
to have a proper reference point. The waveform presented here, designated as T_
MQTT_SN, represents the execution of the MQTT-SN task on the Linux platform 
with the LitmusRT extension as described earlier in this section. Having the same 
measuting methods as before, the longest execution time of the MQTT-SN task can 
be identified by the value L

MAX
 . This measured value of 302.5 � s for the WCET of 

the MQTT-SN task represents a much faster execution than in the previous case of 
1.157 ms, mainly because this platform is a Raspberry PI3 with a much higher CPU 
frequency of 1.2 GHz.

Furthermore, the MQTT-SN Driver response time is described by the second 
waveform in Fig. 16 designated again as MQTT-SN DRV RESP and measured by the 
timing marker P0. We can observe the exact same behaviour and as in the previous 
case as expected. The full PUBLISH-PUBACK transaction time is represented 
here in the third waveform designated as MQTT-SN-PUB-PUBACK and measured 
by the P1 timing markers. The notable time difference of aprox. 100 ms is easily 
explained by the fact that the data in this case has a longer transmission path thus the 
PARSECS_RT intra-board communication protocol transfers the MQTT-SN packet 
from the motherboard of the WIT to the communication module and vice-a-versa 
when the MQTT-SN response is received.

Fig. 16   MQTT-SN driver time analysis for real-time ZigBee MQTT-SN WSN WIT node
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The time measurements regarding the MQTT-SN task presented in Figs. 13, 14, 
15, 16 are being summarized in Table 10. The measured execution period values are 
consistent with the theoretical values as given in Tables 7, 5. Being mandatory in 
real-time systems, the predictability of the driver is demonstrated by the Response 
Time which must have a maximum value equal to the execution period as demon-
strated by the measurements. Another essential parameter for real-time systems, the 
WCET is measured on the two different platforms which is clearly influenced by the 
performance of the CPUs executing the task.

6 � Conclusion and Future Work

In this paper we propose a solution for integrating existing low-rate wireless sensor 
networks into an IoT network using MQTT-SN, an MQTT variant adapted for such 
networks. We concentrate our work in the real-time domain thus we designed a real-
time, platform independent driver for MQTT-SN.

We managed to create a hybrid IoT network consisting of both MQTT capable 
devices and low-rate sensor networks running our MQTT-SN driver. We obtained a 
heterogeneous IoT network presented as a homogeneous MQTT network.

In terms of scalability, our solution practically relies on the scalability of the 
underlying transport protocols thus MQTT and MQTT-SN are proven not to affect 
this property.

To provide a much clearer concluding overview, in Table  11 we provide 
a comparison summary of our solution with other existing MQTT-SN 
implementations. As it can be observed our MQTT-SN Real Time driver not only 
that provides hard real-time support for critical application but also offers greater 
flexibility in terms of underlying transport protocols and implementation platforms.

We further continue our work and have already obtained preliminary promising 
results by adapting this proposed architecture for integration with the Conti Cooja 
Simulator in order to obtain an IoT network functioning with both simulated and 
real hardware devices.

Table 10   Time measurement summary

MQTT-SN task
Execution time parameters

ZigbBee MQTT-SN
WSN Node

Real-time ZigBee
MQTT-SN WIT node

Hardware platform NXP LPC 2148 Raspberry PI3
CPU Frequency 58.9824 MHz 1.2 GHz
Execution Period 49.956 ms 50.083 ms
WCET 1.157 ms 302.5 �s
Response Time 49.335 ms 46.8885 ms
PUB-PUBACK
Transaction Time

116.1081 ms 250.4455 ms
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