
Vol.:(0123456789)

Journal of Network and Systems Management (2025) 33:37
https://doi.org/10.1007/s10922-025-09916-1

Integrating Real‑Time Wireless Sensor Networks into IoT
Using MQTT‑SN

Valentin Stangaciu1 · Cristina Stangaciu1 · Bianca Gusita1 · Daniel‑Ioan Curiac2

Received: 9 August 2024 / Revised: 27 January 2025 / Accepted: 13 February 2025
© The Author(s) 2025

Abstract
Wireless Sensor Networks gradually became a mature technology that enabled the
implementation of a large number of critical applications. However, the integration
of such networks in much more complex systems, such as IoT, still poses a major
challenge. In this paper we present a viable solution to accomplish such a difficult
task by using MQTT-SN to integrate critical real-time WSNs into an IoT platform.
The core of our work is a platform independent real-time driver for MQTT-SN along
with a communication architecture to enable the integration of low end devices into
an MQTT network using MQTT-SN. We also describe a comprehensive practical
demonstration using real hardware modules that validates our claimed solution.

Keywords  Real-time communication · Wireless sensor networks · Internet of
things · MQTT · MQTT-SN

 *	 Valentin Stangaciu
	 valentin.stangaciu@cs.upt.ro

	 Cristina Stangaciu
	 cristina.stangaciu@cs.upt.ro

	 Bianca Gusita
	 bianca.gusita@cs.upt.ro

	 Daniel‑Ioan Curiac
	 daniel.curiac@aut.upt.ro

1	 Department of Computer and Information Technology, Politehnica University Timisoara, 2,
Piata Victoriei, 300006 Timisoara, Timis, Romania

2	 Department of Automation and Applied Informatics, Politehnica University Timisoara, 2, Piata
Victoriei, 300006 Timisoara, Timis, Romania

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-025-09916-1&domain=pdf

	 Journal of Network and Systems Management (2025) 33:37 37   Page 2 of 34

1  Introduction

The Edge Layer of an Internet of Things (IoT) platform is represented by many small
devices low on computational, power and communication resources that handle
the basic sensing and control tasks [1, 2] and are monitored and managed by the
Fog and Cloud Layers [3, 4]. Such devices have evolved in terms of both numbers
and hardware resources [5] being able to perform more sophisticated tasks and use
modern communication protocols such as MQTT or CoAp that rely mainly on the
TCP/IP stack [6].

However, integrating already existing Wireless Sensor Networks (WSNs) into
an IoT platform still poses a challenge mainly because of the lack of hardware
resources of the nodes. Furthermore, these devices rely on battery power which
limits their communication capabilities thus standard IoT protocols based on TCP/
IP are not suitable which implies using other solutions such as MQTT-SN [7]. An
even greater challenge is to integrate WSNs that have specific time constraints when
implementing real-time applications [8].

MQTT (Message Queuing Telemetry Transport) is a communication protocol
based on the publish/subscribe paradigm designed especially for IoT. The protocol
is organized in a Client–Server manner where the client part is represented by the
IoT nodes and the server part is represented by a so-called broker which governs the
whole network [9].

The MQTT protocol is localized at the application layer according to the OSI ref-
erence model [10] having the TCP/IP protocol as a transport under-layer. A simpli-
fied architecture of the MQTT protocol is presented in Figure. 1

Fig. 1   MQTT general architecture

Journal of Network and Systems Management (2025) 33:37 	 Page 3 of 34  37

Being designed for IoT, the MQTT protocol is restrictive in requiring TCP/IP,
which is unsuitable when applying this protocol for a sensor or wireless sensor
network [11]. In such networks, the nodes have few resources in terms of memory
or computational power and are usually battery-powered thus making the usage of
TCP/IP almost impossible [12].

To solve some of these issues, a lighter version of the MQTT protocol was
designed to allow MQTT usage on devices low on resource and battery-powered.
The new version of the protocol designated as MQTT-SN (MQTT Sensor Networks)
[13] allows the integration of sensor networks and wireless sensor networks into an
MQTT network thus enabling access into the IoT paradigm.

The MQTT-SN may be transported by any communication protocol other than
(but not excluding) TCP/IP such as 6LoWPAN [14], UDP [15] or ZigBee [16]. The
messages of MQTT-SN are lighter and shorter than those of the classical MQTT but
retain the same functionality. The most important differences between MQTT and
MQTT-SN regarding lighter messages are the following [9, 17]:

•	 The connect message is split into three other messages where one is mandatory,
the rest being optional

•	 The REGISTER-REGACK messages are introduced to replace topic names with
numerical topic IDs, thus significantly reducing message size when addressing
topics

•	 WILL messages and topics may be changed any time after a connection has been
established

•	 PUBLISH-PUBACK will only use a topic ID or short topic name thus leaving
more space for actual data

•	 SUBACK message returns the numerical topic ID of the topic name initially sent
by the SUBSCRIBE message

•	 A DISCOVERY message is introduced for a gateway to announce its presence to
the potential clients

Besides these changes, for a lightweight sensor network to be integrated into
a MQTT network an additional element is needed. This additional element is
represented by the MQTT-SN gateway which makes the interfacing and connection
between the sensor network and the MQTT broker. The connection between the
gateway and the sensor network is handled by the existing communication interface
of the network which transports the MQTT-SN messages. The connection between
the MQTT-SN gateway and the MQTT broker is implemented using the TCP/IP
protocol stack.

Practically, the MQTT-SN protocol allows the integration of a classical wireless/
wired sensor network with a modern MQTT network designed for the latest IoT
paradigm. Such an integration takes advantage of the features of the wired/wireless
sensor networks such as real-time operation, low-cost, and low power as well as
the advantages of the modern IoT networks such as integrability, scalability, and
security [18].

Another important aspect is that the nodes in such a hybrid network
implementation are visible to the end user individually without any limitations.

	 Journal of Network and Systems Management (2025) 33:37 37   Page 4 of 34

Finally, with the help of MQTT-SN, the user may integrate an already existing WSN
network with an IoT network.

The MQTT-SN solutions for the client nodes are not fully implemented even
though they are available in many forms and many programming languages. Usually,
for MQTT-SN, there are implementations available only for the main messages
supported by the protocol but no actual working flow is defined. Many of the
timings are also not implemented. Practically, without the main flow of the protocol
the available implementations cannot be integrated into a working environment. The
main flow must be implemented by the user in most of the available solutions.

In this paper, we propose an IoT architecture at Edge Layer that transparently
integrates different wireless sensor networks using MQTT and MQTT-SN as
application layer communication protocols. We also provide the design and
implementation for the MQTT-SN communication protocol, including a platform-
independent, real-time driver for MQTT-SN. With our solutionmode, different
independent sensor networks that use different communication platforms will be
able to interoperate and be integrated into a modern IoT network.

As we discuss in the Related Work section and from the best of our knowledge
there is no actual solution for using MQTT-SN in critical, time-bounded real-time
systems thus our main contribution is to provide such a functionality. Furthermore,
we also present a novel IoT architecture which enables classical Real-Time Wireles
Sensor Networks to be integrated into this paradigm.

The following is a summary of our main contributions:

•	 We provide a design for a hybrid IoT architecture at Edge Layer that transparently
integrates different WSNs using MQTT and MQTT-SN communication
protocols

•	 We present our design and implementation of the communication flow between
clients and gateways.

•	 We offer a platform-independent, real-time driver for MQTT-SN
•	 We describe our implementation and demonstrate the effectiveness of our

solution on real hardware platforms and present the experimental evaluation

The rest of the paper is organized as follows. A discussion regarding the related
work is presented in Sect. 2 before describing our proposed network architecture in
Sect. 3. The core of our work, the MQTT-SN real-time driver, is presented in Sect. 4
while a practical demonstration of the implementation on real hardware platforms is
described in Sect. 5. The final Section concludes this paper.

2 � Related Work

Regarding the implementation availability of MQTT, there are many available
solutions for it. The implementations for MQTT are numerous supporting many
programming languages and operating systems [19].

However, the situation is not the same for MQTT-SN. In this case, there are
limited implementations for MQTT-SN. The gateway is usually found implemented

Journal of Network and Systems Management (2025) 33:37 	 Page 5 of 34  37

in many programming languages but the situation is not the same on the client side.
A small step towards the integration of MQTT-SN was taken in [20] where authors
explore this possibility but only using a simulation environment such as Cooja from
ContikiOS. The same principle was adopted by the authors in [21] where MQTT-SN
was evaluated along CoAP using the same simulation environment.

The MQTT-SN Protocol is not only integrated and evaluation in simulation
environments, thus many implementations are currently available and documented
properly. One such solution is available for the popular Arduino platform to be
integrated in small sensing embedded projects [22]. The Zephyr Project also offers
support in this direction providing their own solution for MQTT-SN for more
complex embedded systems [23].

Another much more complex solution is available to be used in Linux based
operating systems offering full suport along with a gateway to provide integration
with an MQTT Broker [24]. Similar to this solution, the HiveMQ enterprise-ready
MQTT platform [25] provides some limited support for MQTT-SN on both client
and gateway side.

In many such solutions, the driver is usually implemented in a blocking manner
which is not suitable for critical real-time systems. Furthermore, the transport
protocol is usually hard-coded to UDP, thus limiting usage and portability to low-
rate devices.

On the same principle as our proposed architecture, a hybrid solution of MQTT
combined with ZigBee is already available and very popular in the home automation
industry. Such a solution, represented by Zigbee2MQTT [26] acts similar to an
MQTT-SN gateway and enables sensors and actuators implemented mainly using
low rate and low-cost devices with ZigBee communication capabilities to be
integrated into home automation solutions [27] where both power efficiency and
network security are necessary [28, 29]. The drawback in this situation is that only
supported Zigbee2MQTT devices may be integrated into the network. A list of such
devices is provided, but without offering a universal solution, thus the addition of a
new device implies a long process of integration into the system which is done by
the developer team.

The relatively recent endeavours of further development of the MQTT-SN
protocol are also tackling IoT-specific communication security problems. Security
within MQTT-SN is recognized as an open issue [30, 31], prompting ongoing
research aimed at enhancing its security frameworks without compromising
its efficiency and low resource requirements. Currently, MQTT-SN is actively
supported across various sectors such as smart city [12] or agriculture [32],
reflecting its utility and confidence in its evolving security measures.

Different security solutions were proposed for enhancing MQTT-SN: like an
intrusion detection system [30], several security mechanisms for authentication,
access control, end-to-end security [33] or message encryption [34].

Other MQTT-SN extensions aim at improving the quality of communication in
terms of latency: e.g. by controlling the Quality of Service in response to the status
changes in the underlying network [15] or by providing real-time communication
services, extending the message model by adding real-time attributes as priority and
deadline to certain messages [35].

	 Journal of Network and Systems Management (2025) 33:37 37   Page 6 of 34

3 � Hybrid IoT Real‑Time Network

The main outcome of our work is a hybrid network of heterogeneous devices
interconnected in order to achieve a single Internet of Things platform. We have
interconnected four different types of networks as depicted in Fig. 2 using MQTT
and MQTT-SN as application layer protocols.

The hybrid network is mainly based on MQTT under the coordination of
an MQTT Broker. The classic MQTT network provides the base for the whole
architecture being compatible with any device that can connect to an MQTT
network using TCP/IP as a transport protocol. However, such a network is not
suitable for low-rate devices, thus the TCP/IP protocol cannot be adapted to run
on such devices.

In order to add the low-rate devices to the existing MQTT network we made
use of the MQTT-SN protocol and adapted it accordingly. The interconnection
was done by adding an MQTT-SN gateway by adapting the solution from
Eclipse Paho [36, 37]. We modified the MQTT-SN gateway from Eclipse Paho to
simultaneously coordinate multiple and different types of sensor networks such
as:

Fig. 2   Hybrid MQTT communication architecture

Journal of Network and Systems Management (2025) 33:37 	 Page 7 of 34  37

1.	 HopeRF Network - a low-rate, non-real-time wireless sensor network built using
low-rate, low-power hardware with low computational and memory resources.
Thus, such a network is usually very hard to integrate into an existing IoT network.

2.	 ZigBee Wireless Sensor Network - a soft real-time wireless sensor network using
wireless modules along with the ZigBee [38] stack as communication interface.
We consider this network to function in a soft-real time manner whe

3.	 Real-Time Wireless Sensor Networks - a hard real-time wireless sensor network,
using also the ZigBee stack as communication interface on networks nodes having
a hard real-time software component.

The real-time aspects of these networks is considerred at a node level where the
communication driver along with the other tasks may or may not function in a
real-time manner with strict time constraints. The firmware of the node of the
HopeRF network (1) is written in a non-real-time manner with blocking and non-
deterministic code. The system is not capable of real-time support from a hardware
or software point of view.

The ZigBee Wireless Sensor Network (2) is capable of real-time constrants
but many software modules are not designed in a deterministic manner which
limits their real-time capability. In this case we consider that only soft real-time is
supported where deadline misses of tasks in the node’s firmware are permitted thus
affecting only the performance of the system.

The nodes of the the Real-Time Wireless Sensor Network (3) were designed
to fully support hard real-time constraints at a task level. The firmware is fully
predictable without using any blocking statements having a Hard Real-Time Task
Execution environment based on FreeRTOS [39] which guaranteed no deadline
misses at a node level.

The three wireless sensor networks enumerated above were integrated with the
help of our real-time, platform-independent driver for MQTT-SN based on the
implementation provided by Paho Eclipse [22]. This part of our work is presented in
section 4 of this paper.

4 � MQTT‑SN Real‑Time Platform Independent Driver

This section aims at presenting the most important part of our work: our real-time
solution of a real-time software module for MQTT-SN for the client devices, and the
sensor nodes.

Our client implementation is based on the source code provided by Eclipse
Paho [22] which offers only a base code for the message definitions and data
encapsulations encoding and decoding. The documentation limits to the usage over
network sockets in Linux-based operating systems [40].

Our implementation provides an MQTT-SN task to be executed in a real-time
environment that can achieve strict time constraints. The task implementation is
non-blocking with a predictable flow. Our solution may also be executed in a non-
real-time environment.

	 Journal of Network and Systems Management (2025) 33:37 37   Page 8 of 34

The main flow of the driver is concentrated on the three main states of the
MQTT-SN protocol that we defined in our solution:

•	 State MQTT-SN DISCONNECTED – the client is disconnected from the
broker and no data exchange is possible except for the packets that may be
received in a connection-less state such as ADVERTISE, SEARCHGW,... etc.

•	 State MQTT-SN CONNECTING – the client is in the connecting process. The
MQTT CONNECT packets were sent by the client and it waits for a CONNACK
confirmation from the broker.

•	 State MQTT-SN CONNECTED – the client is connected with the broker and a
full message exchange is permitted from this point on.

The main flow of the protocol implementation is based on the state transitions
presented in Fig. 3. The main state transitions are determined either by message
exchange or by some strictly defined protocol timings.

The protocol timings are ensured using real-time software timers [41, 42]. The
software timer’s task needs to be executed by a real-time operating system with strict
time parameters in order to provide accurate timing. However, in the case where
such a real-time environment is not available, the software timer’s main task may be
executed periodically by using an interrupt servicing routine.

The software timers are used to implement three different timings required by the
protocol:

•	 Timeout timer – this timer implements the timeout which is defined here as the
maximum period of time between a request and a response. If this timer expires
the timeout procedure is initiated.

•	 Back-off timer – the timer implements the back-off time, which is a period of
time in which the client must not initiate any transmissions. Any transmission
during the back-off time is rejected by the broker and eventually, the connection
gets terminated.

Fig. 3   MQTT-SN general state
transitions

Journal of Network and Systems Management (2025) 33:37 	 Page 9 of 34  37

•	 Ping timer – this timer implements the period of time between the exchange of
ping messages and has the role of keeping the session alive

The actual values of the timings implemented by the three timers are defined in
accordance with the broker configuration.

The transitions defined in Fig. 3 that are determined either by the timings defined
above or by event occuring upon MQTT-SN package exchange. A timeout event
is generated when a response to a request is not received before the timeout timer
expires. In such a situation the transaction is resumed but not before checking if
a maximum number of consecutive timeouts were generated. Such a situation
may suggest that the connection between the client and the gateway/broker is lost
thus implying a transition to MQTT-SN DISCONNECTRED state. An internal
variable is used to keep the consecutive number of timeouts. This variable is reset
at each received packet. The transition to MQTT-SN CONNECTING is determined
immediately after the back-off timer expires insuring the during this period no
package exchange is permitted. In this state, the MQTT-SN client initiates the
procedure responsible for establishing the connection with the MQTT broker
through the MQTT-SN gateway. A transition to the MQTT-SN CONNECTED state
will thus result after the connection was succesfully established.

Another important aspect is that when a timeout occurs, the current transaction is
not immediately resumed. Before retrying a failed transaction, the client must first
wait a back-off time during which it must be silent. Such behaviour is also defined by
the broker and is mandatory.

The main flow of the protocol is not very complex but it needs to take some
considerations into account:

•	 The timings and the protocol message exchange needs to be strictly fulfilled
•	 The time period of the protocol’s task execution needs to be in accordance with

the communication interface (at least two times faster than the maximum period
of time between packet reception from the lower levels)

The main protocol flow will be presented in two phases: the connecting and
connected phases. The connecting phase of our MQTT-SN implementation is
designed according to Fig. 4

The flow begins with a back-off waiting time in order to ensure the requested
silence in case of a possible previous error. After the back-off waiting state the flow
goes into state MQTT-SN DISCONNECTED. In this state, the client must send an
MQTT Connect request to the broker to initiate a connection. Successful transmis-
sion of a connect request will change the flow into state MQTT-SN CONNECTING.
However, if the transmission is not successful, the flow will be restarted with the
back-off waiting procedure.

In the MQTT-SN CONNECTING state, the client must only wait for a
response from the broker containing a CONNACK message within the defined
timeout period. If the timeout limit is reached then the MQTT flow will be reset
with the back-off wait period. If a CONNACK message is received from the bro-
ker the client MQTT flow goes into MQTT-SN CONNECTED state. The client

	 Journal of Network and Systems Management (2025) 33:37 37   Page 10 of 34

will remain in this state until either a DISCONNECT message is received from
the gateway/broker, or the client wants to disconnect from the gateway/broker, or
in case the maximum number of consecutive timeouts is reached.

In the MQTT-SN CONNECTED state, the flow is responsible for three
operations: keeping the connected session alive by sending periodic ping requests
(PINGREQ), processing incoming MQTT-SN messages from the broker, and

Fig. 4   MQTT-SN task main flow connecting phase

Journal of Network and Systems Management (2025) 33:37 	 Page 11 of 34  37

processing local events for sending MQTT-SN messages to the broker. The flow
is designed as presented in Fig. 5.

Immediately before commuting into the MQTT-SN CONNECTED state, the ping
timer is started. This timer dictates when a ping request (PINGREQ) needs to be sent
by the client to the gateway/broker. This ensures that the session is being kept alive.
If the ping procedure is not implemented, the client is automatically disconnected by
the broker, thus this procedure is vital for communication.

Our version of the MQTT-SN Client implementation manages the MQTT-SN topics
by dividing them into local and remote topics. The local topics are the topics that are
exported to the broker by issuing a SUBSCRIBE message followed by a PUBLISH
message each time the payload changes. The remote topics are the topics that are

Fig. 5   MQTT-SN task main flow connected phase

	 Journal of Network and Systems Management (2025) 33:37 37   Page 12 of 34

imported from the broker by issuing a REGISTER message and updating their value
each time a PUBLISH message arrives from the broker. The data structure of a topic
(remote or local) is described in Listing 1.

The structure members have the following meanings:

•	 topic_id – the numerical ID assigned to a topic, identified initially by its name,
either in the REGISTER or SUBSCRIBE procedure.

•	 register_packet_id – the numerical ID of the packet that initiated the REGISTER
or SUBSCRIBE procedure. This ID will later be used to confirm the procedure by
REGACK or SUBACK packages.

•	 payload – the actual data payload transported usually by a PUBLISH message
•	 payload_length – the length of the payload in bytes
•	 flag_qos – a bitfield having the following structure:

The flags described in Table 1 have the following meaning:

•	 valid – states that the current record of the MQTT_SN_TOPIC structure is valid and
that all the fields are correctly assigned.

•	 registered – states that the current topic was successfully registered or subscribed.
•	 ackNeeded – states that the current topic is the REGISTER or SUBSCRIBE

process and a corresponding REGACK or SUBACK is needed

Table 1   Bitfield description of
flag_qos

bit number 7 6 5 4 3 - 0

description valid registered ackNeeded newPayload QOS

Journal of Network and Systems Management (2025) 33:37 	 Page 13 of 34  37

•	 newPayload – states that a new data payload was received for the current topic
(which was successfully registered or subscribed)

•	 QOS – the QOS level for the current topic

The values of the flags in the bit-field described in Table 1 are limited to a certain
set as described in Table 2.

Being designed for a real-time system, the local and remote topics are stored in
statically allocated arrays and are accessed by the other tasks and application layers
only through dedicated APIs.

The next part of the connected phase of the flow is to process any received
MQTT-SN message from the gateway/broker. At each received message, the timeout
timer is being reset. The implementation currently handles the following received
MQTT-SN messages:

•	 PINGRESP – ping response - this packet states that a previously sent PINGREQ
was acknowledged by the broker

•	 ADVERTISE – this packet is used by the gateway to announce its presence.
Currently, the gateway is hard-coded thus this message is decoded but ignored

•	 REGACK – this message is received for a previously transmitted REGISTER
request. In this case, the flow will mark the local topic identified by the received
topic_id as registered. From this point on, the marked topic is registered by the
broker and its value may be updated at any time by using a PUBLISH message

•	 PUBACK – this message is received as a response for previously sent PUBLISH
request to update the value of a local topic. In this case, the local topic’s new
payload is marked as acknowledged

•	 SUBACK – this message is received as a response to a previously sent
SUBSCRIBE request to subscribe to a remote topic. This message practically
confirms the subscription to a remote topic and from this point on, the value for
this topic will receive updates from the broker.

•	 PUBLISH – This message is sent by the broker for a subscribed remote topic to
signal a value update. The flow will update the locally stored value of the remote
topic with the value received with this message.

In the case of the reception of messages such as REGACK, PUBACK and SUBACK
this marks the end of the transaction: REGISTER-REGACK, PUBLISH-PUBACK
and SUBSCRIBE-SUBACK. This state is marked internally by using the variable
transaction_in_progress. In the case of the reception of REGACK, PUBACK and
SUBACK, the transaction_in_progress variable is set to false.

The internal tasks to be executed here, depicted in Fig. 6, are the following (in
this order):

1.	 Find the first remote topic that has a pending PUBACK to be sent for a previously
received PUBLISH message.

2.	 Find the first remote topic that needs to be subscribed by sending a SUBSCRIBE
message.

	 Journal of Network and Systems Management (2025) 33:37 37   Page 14 of 34

Ta
bl

e 
2  

F
la

g
va

lu
e

m
ea

ni
ng

Va
lid

Re
gi

ste
re

d
A

ck
N

ee
de

d
N

ew
Pa

yl
oa

d
M

ea
ni

ng

0
–

–
–

C
ur

re
nt

 to
pi

c
re

co
rd

 is
 n

ot
 v

al
id

 a
nd

 th
e

dr
iv

er
 w

ill
 c

on
si

de
r i

ts
 fi

el
d

1
0

–
–

C
ur

re
nt

 to
pi

c
is

 v
al

id
 b

ut
 n

ot
 re

gi
ste

re
d

or
 su

bs
cr

ib
ed

 th
e

dr
iv

er
 w

ill
 se

nd
 a

 R
EG

IS
TE

R
 re

qu
es

t f
or

 a

lo
ca

l t
op

ic
 o

r a
 S

U
B

SC
R

IB
E

re
qu

es
t o

f a
 re

m
ot

e
to

pi
c

1
1

0
–

Th
e

dr
iv

er
 is

su
ed

 a
 R

EG
IS

TE
R

 /
SU

B
SC

R
IB

E
re

qu
es

t a
nd

 is
 c

ur
re

nt
ly

 w
ai

tin
g

fo
r a

 R
EG

A
CK

 o
r

SU
BA

CK
 re

sp
on

se
 fr

om
 th

e
ga

te
w

ay
1

1
1

–
Th

e
cu

rr
en

t t
op

ic
 (l

oc
al

 o
r r

em
ot

e)
 is

 re
ad

y
to

 b
e

us
ed

 fo
r p

ay
lo

ad
 tr

an
sf

er
 u

si
ng

 P
U

B
LI

SH
-P

U
BA

CK

pr
oc

ed
ur

e
1

1
1

1
A

 n
ew

 p
ay

lo
ad

 is
 av

ai
la

bl
e

fo
r t

he
 c

ur
re

nt
 to

pi
c

ei
th

er
 to

 b
e

pu
bl

is
he

d
(lo

ca
l t

op
ic

) o
r w

as
 re

ce
iv

ed
 v

ia

PU
BA

CK
 (r

em
ot

e
to

pi
c)

Journal of Network and Systems Management (2025) 33:37 	 Page 15 of 34  37

3.	 Find the first local topic that has not been registered in order to obtain a numerical
topic ID and issue a REGISTER request if needed

4.	 Find the first local topic that has a new payload and the value has to be published
by sending a PUBLISH message

5.	 Check if the ping timer has expired and a PINGREQ message needs to be sent

Each of these operations is executed only once within one execution of the main
task. For each execution, the variable transaction_in_progress is marked as true
and the timeout timer is restarted. Finally, the flow returns to the beginning of the
MQTT-SN CONNECTED state.

Fig. 6   MQTT-SN internal tasks flow

	 Journal of Network and Systems Management (2025) 33:37 37   Page 16 of 34

5 � Implementation and Experimental Results

We implemented our real-time MQTT-SN driver on various real hardware-soft-
ware platforms. We built the architecture depicted in Fig. 2 and described in
Sect. 3.

The Low-Rate Wireless Sensor Network is implemented using devices
low on memory, power and computational resources. A HopeRF RFM12B
Transceiver represents the wireless communication interface for these devices
citehoperfrfm12b connected via SPI to the board’s processor, an ARM7TDMI-S
[43] microcontroller, an NXP LPC2103 chip [44]. Our custom implementation
of such modules is presented in Fig. 7b. The software component is represented
by a trivial non-real-time implementation, thus other solutions (i.e. a real-
time operating system) are not suitable for such hardware. This limits the
implementation of using a classical main loop using blocking operations along
with the processor’s interrupt system. The main characteristics of the test
environment for this type of node are presented in Table 3.

The ZigBee Wireless Sensor Network is built using other custom-made
modules (Fig. 7a). We implemented these modules using a similar ARM7TDMI-S
processor, namely an NXP LPC2148 [45], which drives a Digi XBee Series 2

Fig. 7   Hybrid MQTT-SN nodes

Table 3   Low-Rate WSN test parameters

Parameter Value Parameter Value

CPU Frequency 92.16 Mhz Maximum RF packet Length 64 bytes
Back-off time 3000 ms Transaction timeout 2 s
Keep alive transmit period 5 s Keep alive timeout 100 s
Maximum consecutive timeouts 3 Data payload update period 1 s

Journal of Network and Systems Management (2025) 33:37 	 Page 17 of 34  37

RF module [46] via a UART interface. The software component is based on our
hybrid real-time solution [47] where we took advantage of both the FreeRTOS
operating system [48] and the stability of jitterless execution provided by the
HARETICK (Hard Real-Time Compact Kernel) [49]. The two operating systems
manage a set of tasks that provide a predictable real-time by using specific time
constraints as described in Table 4.

The XBee driver implementation [50] ensures a firm real-time communication
with the ZigBee network. The driver is represented by 5 tasks XBEE1-4 and XAPP
while the MQTT-SN driver is implemented by the MQTT task as specified in
Table 4. The test characteristics for the ZigBee WSN nodes are described in Table 5.

Furthermore, we integrated an already existing real-time network into the hybrid
solution we presented in this paper to adapt our environment to the IoT paradigm.
Such a network implements a real-time robotic collaborative environment [51]
meant for time-critical applications. The nodes of the networks are represented by
the entity designated as WIT (Wireless Intelligent Terminal) which is built as a
multi-board and multi-processor architecture with a hard real-time communication
protocol stack (PARSECS_RT Stack) ensuring the intra-board communication [52].

The WIT, with a prototype presented in Fig. 7c, is a multifunctional node driven
by a motherboard implemented with the help of a Raspberry PI3 module [53].
The communication is also implemented by an XBee Series 2 module attached
to a dedicated communication board with a similar architecture as the previously
described. However, the functionality of the whole node is dictated by the
motherboard which implements the whole logical flow of the WIT, and thus hosts
our MQTT-SN driver as one of the running tasks. The main operating system is
ArchLinux [54] along with the LitmusRT add-on meant to provide higher real-time
flexibility for the Linux kernel. The real-time tasks that are running in the system
using the LitmusRT scheduling add-on along with their timing are described in
Table 6. To ensure a strict hard-real time behavior, each task was assigned to a
single different reservation pool [55].

The test characteristics for the Real-Time ZigBee WSN nodes are described in
Table 7.

The values chosen in Tables 3,5 and7 are mostly dependent on the communication
interface. The Maximum RF Packet Length parameters states the maximum value of
a data packet supported by the communication interfaces which is 64 for the HopeRF
modue and 96 for the ZigBee Series 2 modules. Regarding the HopeRF network,
the values in Table 3 are a little more aggressive than the values for the other two
networks mainly because the instability of the HopeRF network. This characteristic
of the low-rate HopeRF network implies that the nodes are prone to more packet
loss than the ZigBee modules which may lead to more disconnected events. In order
to keep the nodes connected as much as possible, the keep alive transmit period
was decreased keeping the nodes more active on the network. Furthermore, in order
to provide a faster reconnection in case of a disconnect situation the maximum
consecutive timeouts value is much more strict than the value used for the other
network types. One can easily observe that these values are more permissive for the
ZigBee networks because of the increased stability of such networks. However, the
data payload update period was arbitrary taken.

	 Journal of Network and Systems Management (2025) 33:37 37   Page 18 of 34

Ta
bl

e 
4  

Z
ig

B
ee

 M
Q

TT
-S

N
 W

SN
 n

od
e

ru
nn

in
g

ta
sk

s

Ta
sk

 n
am

e
Ta

sk
 sh

or
t n

am
e

Ta
sk

 d
es

cr
ip

tio
n

Ta
sk

 p
er

io
d

O
S

C
on

te
xt

TI
M

ER
_S

O
FT

W
A

R
E

TS
Th

e
so

ftw
ar

e
tim

er
 e

ng
in

e
th

at
 a

llo
w

s t
he

 M
Q

TT
-S

N
 ti

m
in

gs
 to

 b
e

im
pl

em
en

te
d

1
m

s
Fr

ee
RT

O
S

Ta
sk

_X
B

ee
La

ye
r1

X
B

EE
1

La
ye

r 1
 o

f t
he

 X
B

ee
 S

er
ie

s 2
 re

al
-ti

m
e

dr
iv

er
12

00
 �

s
H

A
R

ET
IC

K
Ta

sk
_X

B
ee

La
ye

r2
X

B
EE

2
La

ye
r 2

 o
f t

he
 X

B
ee

 S
er

ie
s 2

 re
al

-ti
m

e
dr

iv
er

6
m

s
Fr

ee
RT

O
S

Ta
sk

_X
B

ee
La

ye
r3

X
B

EE
3

La
ye

r 3
 o

f t
he

 X
B

ee
 S

er
ie

s 2
 re

al
-ti

m
e

dr
iv

er
20

 m
s

Fr
ee

RT
O

S
Ta

sk
_X

B
ee

La
ye

r4
X

B
EE

4
La

ye
r 4

 o
f t

he
 X

B
ee

 S
er

ie
s 2

 re
al

-ti
m

e
dr

iv
er

50
 m

s
Fr

ee
RT

O
S

Ta
sk

_X
B

ee
A

pp
Ta

sk
X

A
PP

A
pp

lic
at

io
n

la
ye

r o
f t

he
 X

B
ee

 S
er

ie
s 2

 re
al

-ti
m

e
dr

iv
er

50
 m

s
Fr

ee
RT

O
S

Ta
sk

_M
Q

TT
M

Q
TT

Ex
ec

ut
es

 th
e

re
al

-ti
m

e
ta

sk
 re

sp
on

si
bl

e
fo

r i
m

pl
em

en
tin

g
th

e
M

Q
TT

-S
N

 d
riv

er
50

 m
s

Fr
ee

RT
O

S

Journal of Network and Systems Management (2025) 33:37 	 Page 19 of 34  37

The rest of the network is a classical MQTT over TCP/IP implemented using
commonly used smartphones and tablets running various versions of Android as the
operating system.

The gateways and the MQTT broker are hosted on an Intel NUC [56]. The
MQTT-SN gateway responsible for the HopeRF Low Rate Wireless Sensor Network
interacts with the gateway using a dedicated adaptor having access to a HopeRF
Transceiver as depicted in Fig. 8a. On the other hand, mainly for simplicity reasons,
the two Zigbee networks are both handled by a single ZigBee coordinator connected
to the gateway through an XBee Series 2 serial adapter as pictured in Fig. 8b.

The gateways and the MQTT broker are hosted on an Intel NUC [56]. The
MQTT-SN gateway responsible for the HopeRF Low Rate Wireless Sensor Network
interacts with the gateway using a dedicated adaptor having access to a HopeRF
Transceiver as depicted in Fig. 8a. On the other hand, mainly for simplicity reasons,
the two Zigbee networks are both handled by a single ZigBee coordinator connected
to the gateway through an XBee Series 2 serial adapter as pictured in Fig. 8b.

The HopeRF Gateway Adapter is built around an NXP LPC2148 microcontroller
[45] and interfaces with the gateway using the serial interface. The main role of
the firmware running on the microcontroller is to manage the radio module and to
provide a communication interface for data transfer with the gateway with minimal
encoding as presented in Fig. 9.

The HopeRF Serial Interface Packet offers a minimum and necessary data
encoding in order to provide simple data transfer for the gateway. When such a
packet is received by the HopeRF Gateway adapter, the extracted data is sent using
the HopeRF Radio module and vice-versa. The fields of the HopeRF Serial Interface
Packet are described in Table 8.

Our solution integrates all of these nodes into a heterogeneous IoT network
presenting it as a homogeneous network over MQTT.

In our test setup, in order to prove the functionality and effectiveness of our
design each node publishes two topics:

•	 upt/name/< name> where < name> represents a string identifying the device
•	 upt/< name>/data where, under a topic containing the device’s name each node

exports a number that incremented internally, identified as data

A much clearer view may be found in Table 9 where the whole test network is
described more accurately.

Table 5   ZigBee MQTT-SN WSN node test parameters

Parameter Value Parameter Value

CPU frequency 58.9824 MHz Maximum RF Packet Length 96 bytes
Back-off time 3000 ms Transaction timeout 2 s
Keep alive transmit period 5 s Keep alive timeout 50 s
Maximum consecutive timeouts 3 Data payload update period 500 ms

	 Journal of Network and Systems Management (2025) 33:37 37   Page 20 of 34

Ta
bl

e 
6  

Z
ig

B
ee

 re
al

 ti
m

e
M

Q
TT

-S
N

 W
SN

 n
od

e
ru

nn
in

g
ta

sk
s

Ta
sk

 n
am

e
Ta

sk
 sh

or
t n

am
e

Ta
sk

 d
es

cr
ip

tio
n

Ta
sk

 p
er

io
d

TI
M

ER
_S

O
FT

W
A

R
E

TS
Th

e
so

ftw
ar

e
tim

er
 e

ng
in

e
th

at
 a

llo
w

s t
he

 M
Q

TT
-S

N
 ti

m
in

gs
 to

 b
e

im
pl

em
en

te
d

1
m

s
Ta

sk
_P

A
R

SE
C

S_
LL

SP
I_

LL
Th

e
PA

R
SE

C
S_

RT
 lo

w
 le

ve
l s

ub
st

ac
k

fo
r i

nt
ra

-b
oa

rd
 S

PI
 c

om
m

un
ic

at
io

n
60

0
us

Ta
sk

_P
A

R
SE

C
S_

H
L

SP
I_

H
L

Th
e

PA
R

SE
C

S_
RT

 h
ig

h
le

ve
l s

ub
st

ac
k

fo
r i

nt
ra

-b
oa

rd
 S

PI
 c

om
m

un
ic

at
io

n
1

m
s

Ta
sk

_M
Q

TT
M

Q
TT

Ex
ec

ut
es

 th
e

re
al

-ti
m

e
ta

sk
 re

sp
on

si
bl

e
fo

r i
m

pl
em

en
tin

g
th

e
M

Q
TT

-S
N

 d
riv

er
50

 m
s

Ta
sk

_A
PP

TA
PP

Ex
ec

ut
es

 th
e

m
ai

n
de

m
o

ap
pl

ic
at

io
n

ta
sk

25
0

m
s

Journal of Network and Systems Management (2025) 33:37 	 Page 21 of 34  37

The whole process was monitored either using the mosquitto_sub [57] and
with a graphical MQTT visualization tool such as MQTT-Explorer [58]. As pre-
sented in Fig. 10, we can identify the topics exported by each node along with
their associated values as described in Table 9.

We have concentrated on evaluating the whole network by measuring the
packet loss in various scenarios with the parameters described in Tables 3, 5, 7.
For each experiment, each node initiated 2500 PUBLISH-PUBACK transactions
and the results are presented in Fig. 11. The main reason behind this decision is
that we wanted to establish if and how different networks could influence each
other.

Table 7   ZigBee Real-Time MQTT-SN WSN node test parameters

Parameter Value Parameter Value

CPU frequency 1.2 GHz Maximum RF packet length 96 bytes
Back-off time 5000 ms Transaction timeout 5 s
Keep alive transmit period 30 s Keep alive timeout 60 s
Maximum consecutive timeouts 10 Data payload update period 3000 ms

Fig. 8   Gateway adapters

Fig. 9   HopeRF serial interface packet

	 Journal of Network and Systems Management (2025) 33:37 37   Page 22 of 34

Ta
bl

e 
8  

H
op

eR
F

se
ria

l p
ac

ke
t fi

el
d

de
sc

rip
tio

n

Fi
el

d
na

m
e

Fi
el

d
fu

ll
na

m
e

Si
ze

 (b
yt

es
)

D
es

cr
ip

tio
n

SO
F

St
ar

t O
f F

ra
m

e
1

M
ar

ks
 th

e
be

gi
nn

in
g

of
 a

 fr
am

e
th

e
va

lu
e

is
 h

ar
d-

co
de

d
as

 0
x7

E
SR

C
So

ur
ce

 A
dd

re
ss

1
Th

e
so

ur
ce

 a
dd

re
ss

 o
f t

he
 p

ac
ke

t g
at

ew
ay

 h
as

 it
s a

dd
re

ss
 h

ar
d

co
de

d
to

 0
x0

0
D

ST
D

es
tin

at
io

n
A

dd
re

ss
1

Th
e

de
sti

na
tio

n
ad

dr
es

s o
f t

he
 n

od
e

w
he

re
 th

e
pa

ck
et

 sh
ou

ld
 b

e
se

nt
LE

N
Le

ng
th

1
Th

e
le

ng
th

 o
f t

he
 d

at
a

fie
ld

D
A

TA
​

D
at

a
fie

ld
LE

N
Th

e
da

ta
 p

ay
lo

ad
CK

SU
M

C
he

ck
su

m
1

Th
e

ch
ec

ks
um

 o
f t

he
 d

at
a

fie
ld

Journal of Network and Systems Management (2025) 33:37 	 Page 23 of 34  37

In order to establish a reference point, we conducted measurements to evalu-
ate the packet loss of each device individually. As expected, the results in Fig. 11a
emphasize the low rate and unreliability of the HopeRF network in contrast with a
much more stable situation where ZigBee is used.

During the next step, we evaluated the packet loss at the network level for each
type of network where all the devices of the same network were included in the
experiment. Because the HopeRF network has an extremely poor MAC level with
no mechanisms to prevent and treat collisions, when more than one device is used,
the instability increases as shown in Fig. 11b. However, on the ZigBee side, even if
the packet loss slightly increases, the obvious higher performance may be observed.

We evaluated the packet loss for the whole hybrid network where all the sensor
networks were included in the experiment, thus all functioning in a hybrid manner
together in parallel. As it can be observed in Fig. 11c few changes in packet loss
occurred. A behaviour change may be noticed when merging all the networks into a
hybrid communication platform but with little negative impact.

Even though these are only preliminary experimental results, they clearly
demonstrate a small increase in packet loss when integrating all the networks.
This result was indeed expected and the measurements prove that this increased
packet loss is negligible and limited. Another important aspect may be observed in
Fig. 11b and Fig. 11c where the two different networks communicating using the
same ZigBee infrastructure are affected by each other. Although this is expected, in
a much practical application such a situation should not occur mainly because the

Table 9   Experimental network description

Network Node short
name

Node long
name

Real-time OS Protocol Published topics

Low Rate
WSN

H1 hope-1 NO NO OS MQTT-SN upt/name/hope-1
upt/hope-1/data

H2 hope-2 NO NO OS MQTT-SN upt/name/hope-2
upt/hope-2/data

ZigBee
WSN

Z1 zigbee-
freertos-1

FRT FreeRTOS
Haretick

MQTT-SN upt/name/zigbee-
freertos-1

upt/zigbee-
freertos-1/data

Z2 zigbee-
freertos-2

FRT FreeRTOS
Haretick

MQTT-SN upt/name/zigbee-
freertos-2

upt/zigbee-
freertos-2/data

Real-Time
WSN

RZ1 wit-1 HRT ArchLinux
LitmusRT

MQTT-SN upt/name/wit-1
upt/wit-1/data

Classic
TCP/IP
Network

mqtt-1 phone-1 NO Android MQTT upt/name/phone-
1

upt/phone-1/data
mqtt-2 tablet-1 NO Android MQTT upt/name/tablet-1

upt/tablet-1/data
mqtt-3 tablet-2 NO Android MQTT upt/name/tablet-2

upt/tablet-2/data

	 Journal of Network and Systems Management (2025) 33:37 37   Page 24 of 34

two networks could be completely separate having distinct networks coordinators
communicating on different frequency channels.

Also, it can be clearly seen in Fig. 11 that no packet loss increase can be observed
in the HopeRF network. The reason behind this behaviour is that the HopeRF
network communicate on a completely different frequency spectrum than the
ZigBee networks. All of this preliminary concludes that the observed packet loss in
the ZigBee networks are not necessarily caused by our hybrid network integration
but because of the increased communication on the same frequency channels which
in a real application may be easily avoided.

Fig. 10   Network visualization proof using MQTT-explorer

Journal of Network and Systems Management (2025) 33:37 	 Page 25 of 34  37

Fig. 11   Packet loss measurement

	 Journal of Network and Systems Management (2025) 33:37 37   Page 26 of 34

It is also very important to mention that the classical MQTT network cannot be
affected in any way by our hybrid solution, thus MQTT is transported by a different
TCP/IP network and is managed entirely by the MQTT broker which is technically
unaware of the existence of the MQTT-SN network. Also, the MQTT network com-
municated on a completely different platform which is not affected by any communi-
cation from a WSN.

A packet loss synthesis as presented in Fig. 12 may be used to summarise the way
packet loss was affected when applying our solution.

In order to further analyze our solution in terms of real-time requirements, we
continue to present in Fig. 13 the task execution timings as captured using a Saleae
Logic Pro16 Analyzer [59] for the ZigBee MQTT-SN WSN Node. In order to obtain
these measurements a classical software method was used: a dedicated GPIO for
each task is toggled to logic LOW at the beginning the the execution of the task and

Fig. 12   Packet loss synthesis

Fig. 13   Real-time task executing timings for ZigBee MQTT-SN WSN node

Journal of Network and Systems Management (2025) 33:37 	 Page 27 of 34  37

to logic HIGH at the end of execution. The timing markers on the right measure the
execution period of the tasks: marker P0 measures the period of the TIMER_SOFT-
WARE task (T_TS), marker P1 the period of XBEE1 Task, P2 the period of XBEE2
Task, P3 the period of XBEE3 Task while P4 measures the period of the MQTT-SN
Task. As it can easily be observed the measured values demonstrate the theoretical
data from Table 4.

An important parameter when dealing with real-time environments is the Worst
Case Execution Time (WCET). This parameter is normally calculated using dedi-
cated tools which are dependent on the CPU architecture. In Fig. 14 we determined
the execution time experimentally and obtained its maximum measured value under
the longest execution path of the driver. The obtained value may be found under
L
MAX

 in Fig. 14.
Another crucial time parameter in this analysis is the response time of the

driver. This parameter is experimentally determined in Fig. 15 at MQTT-SN DRV
RESP. We considered the falling edge when the application updates the value of
the topic upt/zgbee-freertos-1/data and the rising edge when the MQTT-SN driver
sent the PUBLISH message to the radio interface. In the worst conditions, when the
application task updates this value immediately after an execution of the MQTT-SN
task this value is determined by the actual execution period of the MQTT-SN task.
Such a condition is demonstrated by the P0 timing marker in Fig. 15. Furthermore,
as it can be observed the response time is not constant, being dependent on the
conditions described before, but in a real-time environment the absolute maximum
value is crucial.

Fig. 14   MQTT-SN task execution time for ZigBee MQTT-SN WSN node

Fig. 15   MQTT-SN driver response time for ZigBee MQTT-SN WSN node

	 Journal of Network and Systems Management (2025) 33:37 37   Page 28 of 34

The second waveform in Fig. 15 is represented by a PUBLISH-PUBACK trans-
action time and is designated as MQTT-SN-PUB-PUBACK. The falling edge rep-
resents the moment the PUBLISH message is sent to the radio interface and the
rising edge determines the moment the PUBACK is received back by the MQTT-SN
driver from the MQTT broker. Such a time parameter is highly dependent on the
radio communication and it does not influence the timings of the MQTT-SN driver.
The time period of this transaction is measured by P1 timing markers.

A similar analysis is required for the Real-Time WIT Node as presented in Fig. 16
with similar execution parameters as for the ZigBee MQTT-SN WSN Node in order
to have a proper reference point. The waveform presented here, designated as T_
MQTT_SN, represents the execution of the MQTT-SN task on the Linux platform
with the LitmusRT extension as described earlier in this section. Having the same
measuting methods as before, the longest execution time of the MQTT-SN task can
be identified by the value L

MAX
 . This measured value of 302.5 � s for the WCET of

the MQTT-SN task represents a much faster execution than in the previous case of
1.157 ms, mainly because this platform is a Raspberry PI3 with a much higher CPU
frequency of 1.2 GHz.

Furthermore, the MQTT-SN Driver response time is described by the second
waveform in Fig. 16 designated again as MQTT-SN DRV RESP and measured by the
timing marker P0. We can observe the exact same behaviour and as in the previous
case as expected. The full PUBLISH-PUBACK transaction time is represented
here in the third waveform designated as MQTT-SN-PUB-PUBACK and measured
by the P1 timing markers. The notable time difference of aprox. 100 ms is easily
explained by the fact that the data in this case has a longer transmission path thus the
PARSECS_RT intra-board communication protocol transfers the MQTT-SN packet
from the motherboard of the WIT to the communication module and vice-a-versa
when the MQTT-SN response is received.

Fig. 16   MQTT-SN driver time analysis for real-time ZigBee MQTT-SN WSN WIT node

Journal of Network and Systems Management (2025) 33:37 	 Page 29 of 34  37

The time measurements regarding the MQTT-SN task presented in Figs. 13, 14,
15, 16 are being summarized in Table 10. The measured execution period values are
consistent with the theoretical values as given in Tables 7, 5. Being mandatory in
real-time systems, the predictability of the driver is demonstrated by the Response
Time which must have a maximum value equal to the execution period as demon-
strated by the measurements. Another essential parameter for real-time systems, the
WCET is measured on the two different platforms which is clearly influenced by the
performance of the CPUs executing the task.

6 � Conclusion and Future Work

In this paper we propose a solution for integrating existing low-rate wireless sensor
networks into an IoT network using MQTT-SN, an MQTT variant adapted for such
networks. We concentrate our work in the real-time domain thus we designed a real-
time, platform independent driver for MQTT-SN.

We managed to create a hybrid IoT network consisting of both MQTT capable
devices and low-rate sensor networks running our MQTT-SN driver. We obtained a
heterogeneous IoT network presented as a homogeneous MQTT network.

In terms of scalability, our solution practically relies on the scalability of the
underlying transport protocols thus MQTT and MQTT-SN are proven not to affect
this property.

To provide a much clearer concluding overview, in Table 11 we provide
a comparison summary of our solution with other existing MQTT-SN
implementations. As it can be observed our MQTT-SN Real Time driver not only
that provides hard real-time support for critical application but also offers greater
flexibility in terms of underlying transport protocols and implementation platforms.

We further continue our work and have already obtained preliminary promising
results by adapting this proposed architecture for integration with the Conti Cooja
Simulator in order to obtain an IoT network functioning with both simulated and
real hardware devices.

Table 10   Time measurement summary

MQTT-SN task
Execution time parameters

ZigbBee MQTT-SN
WSN Node

Real-time ZigBee
MQTT-SN WIT node

Hardware platform NXP LPC 2148 Raspberry PI3
CPU Frequency 58.9824 MHz 1.2 GHz
Execution Period 49.956 ms 50.083 ms
WCET 1.157 ms 302.5 �s
Response Time 49.335 ms 46.8885 ms
PUB-PUBACK
Transaction Time

116.1081 ms 250.4455 ms

	 Journal of Network and Systems Management (2025) 33:37 37   Page 30 of 34

Ta
bl

e 
11

  
So

lu
tio

n
co

m
pa

ris
on

So
lu

tio
n

Re
al

-ti
m

e
as

pe
ct

s
Tr

an
sp

or
t p

ro
to

co
l

H
ar

dw
ar

e/
so

ftw
ar

e
pl

at
fo

rm
Pr

og
ra

m
m

in
g

la
ng

ua
ge

A
rd

ui
no

 b
as

ed
M

Q
TT

-S
N

 C
lie

nt
 [2

2]
N

o
re

al
-ti

m
e

su
pp

or
t i

m
pl

em
en

te
d

us
in

g
bu

sy
-w

ai
t

lo
op

s
U

D
P

A
rd

ui
no

 b
as

ed
 p

la
tfo

rm
C

+
+

Ec
lip

se
 P

ah
o

[3
7]

M
Q

TT
-S

N
 C

lie
nt

D
oe

s n
ot

 p
ro

vi
de

 a
 fu

ll
w

or
ki

ng
 im

pl
em

en
ta

tio
n

U
D

P
(fo

r t
he

 e
xm

pl
e

co
de

 o
nl

y)
Pl

at
fo

rm
 in

de
pe

nd
en

t
C

C
om

m
sC

ha
m

pi
on

Ec
os

ys
te

m
M

Q
TT

-S
N

 C
lie

nt
 [2

4]

Si
ng

le
-th

re
ad

ed
 n

on
-b

lo
ck

in
g

im
pe

m
en

ta
tio

n
U

D
P

Li
nu

x
ba

se
d

pl
at

fo
rm

C
+

+
 u

si
ng

 S
TL

Ze
ph

yr
M

Q
TT

-S
N

 C
lie

nt
 [2

3]
N

o
re

al
-ti

m
e

su
pp

or
t

U
D

P,
 Z

ig
B

ee
, B

lu
et

oo
th

, U
A

RT
​

Ze
ph

yr
 O

S
C

/C
+

+

H
iv

eM
Q

 E
dg

e
M

Q
TT

-S
N

 G
at

ew
ay

 [2
5]

N
o

re
al

-ti
m

e
su

pp
or

t
U

D
P

H
iv

eM
Q

 E
nv

iro
nm

en
t

C
/C

+
+

O
ur

 M
Q

TT
-S

N
 d

riv
er

H
ar

d
re

al
-ti

m
e

su
pp

or
t

A
ny

 tr
an

sp
or

t p
ro

to
co

l
Pl

at
fo

rm
 a

nd
 O

S
in

de
pe

nd
en

t
C

Journal of Network and Systems Management (2025) 33:37 	 Page 31 of 34  37

Author Contributions  Valentin Stangaciu conducted the main part of the research and written the most
part of the article. Cristina Stangaciu conducted the literature study, was in charge of the real-time analy-
sis and handled all the aspects regarding task scheduling in RTOS. Bianca Gusita conducted the main
testing and validation of the project and verified the correct operation of the MQTT and MQTT-SN pro-
tocols. Daniel Ioan Curiac supervised the whole process related to the writing of the article and revised
the manuscript.

Funding  No funding was received in any way for conducting this study.

Data Availability  Not applicable.

Materials Availability  Not applicable.

Code Availability  Not applicable.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Ethical Approval  Not applicable.

Consent to Participate  Not applicable.

Consent for Publication  All authors have approved the submission of the manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Wang, Y., Wu, S., Lei, C., Jiao, J., Zhang, Q.: A review on wireless networked control system: the
communication perspective. IEEE Internet Things J. 11(5), 7499–7524 (2024). https://​doi.​org/​10.​
1109/​jiot.​2023.​33420​32

	 2.	 Said, S., Hajlaoui, J.E., Omri, M.N.: A survey on the optimization of security components placement
in internet of things. J. Netw. Syst. Manag. (2024). https://​doi.​org/​10.​1007/​s10922-​024-​09852-6

	 3.	 Cruz, M.A.A., Rodrigues, J.J.P.C., Al-Muhtadi, J., Korotaev, V.V., Albuquerque, V.H.C.: A refer-
ence model for internet of things middleware. IEEE Internet Things J. 5(2), 871–883 (2018). https://​
doi.​org/​10.​1109/​jiot.​2018.​27965​61

	 4.	 Singh, P., Singh, R.: Energy-efficient delay-aware task offloading in fog-cloud computing system for
iot sensor applications. J. Netw. Syst. Manag. (2021). https://​doi.​org/​10.​1007/​s10922-​021-​09622-8

	 5.	 Portilla, J., Mujica, G., Lee, J.-S., Riesgo, T.: The extreme edge at the bottom of the internet of
things: a review. IEEE Sens. J. 19(9), 3179–3190 (2019). https://​doi.​org/​10.​1109/​jsen.​2019.​28919​11

	 6.	 Cruz, M.A.A., Rodrigues, J.J.P.C., Lorenz, P., Korotaev, V.V., Albuquerque, V.H.C.: In.iot-a new
middleware for internet of things. IEEE Internet Things J. 8(10), 7902–7911 (2021). https://​doi.​org/​
10.​1109/​jiot.​2020.​30416​99

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/jiot.2023.3342032
https://doi.org/10.1109/jiot.2023.3342032
https://doi.org/10.1007/s10922-024-09852-6
https://doi.org/10.1109/jiot.2018.2796561
https://doi.org/10.1109/jiot.2018.2796561
https://doi.org/10.1007/s10922-021-09622-8
https://doi.org/10.1109/jsen.2019.2891911
https://doi.org/10.1109/jiot.2020.3041699
https://doi.org/10.1109/jiot.2020.3041699

	 Journal of Network and Systems Management (2025) 33:37 37   Page 32 of 34

	 7.	 Tempel, S., Herdt, V., Drechsler, R.: Specification-based symbolic execution for stateful network
protocol implementations in iot. IEEE Internet Things J. 10(11), 9544–9555 (2023). https://​doi.​org/​
10.​1109/​jiot.​2023.​32366​94

	 8.	 Behnke, I., Austad, H.: Real-time performance of industrial iot communication technologies: A
review. IEEE Internet Things J. 11(5), 7399–7410 (2024). https://​doi.​org/​10.​1109/​jiot.​2023.​33325​
07

	 9.	 Standard, OASIS: Mqtt version 5.0. Retrieved June 22, 2020 (2019)
	10.	 Zimmermann, H.: Osi reference model - the iso model of architecture for open systems interconnec-

tion. IEEE Trans. Commun. 28(4), 425–432 (1980). https://​doi.​org/​10.​1109/​TCOM.​1980.​10947​02
	11.	 Nast, M., Golatowski, F., Timmermann, D.: Design and performance evaluation of a standalone

mqtt for sensor networks (mqtt-sn) broker. In: 2023 IEEE 19th international conference on factory
communication systems (WFCS) (2023). https://​doi.​org/​10.​1109/​wfcs5​7264.​2023.​10144​241

	12.	 Rasyid, M.U.H.A., Astika, F., Fikri, F.: Implementation mqtt-sn protocol on smart city applica-
tion based wireless sensor network, pp. 7–12. IEEE, Yogyakarta, Indonesia (2019). https://​doi.​
org/​10.​1109/​ICSIT​ech46​713.​2019.​89875​46

	13.	 Quincozes, V.E., Quincozes, S.E., Kazienko, J.F., Gama, S., Cheikhrouhou, O., Koubaa, A.: A
survey on iot application layer protocols, security challenges, and the role of explainable ai in iot
(xaiot). Int. J. Inf. Secur. 23(3), 1975–2002 (2024). https://​doi.​org/​10.​1007/​s10207-​024-​00828-w

	14.	 Herrero, R.: Mqtt-sn, coap, and RTP in wireless iot real-time communications. Multim. Syst.
26(6), 643–654 (2020). https://​doi.​org/​10.​1007/​S00530-​020-​00674-5

	15.	 Palmese, F., Redondi, A.E.C., Cesana, M.: Adaptive quality of service control for mqtt-sn. Sen-
sors (2022). https://​doi.​org/​10.​3390/​s2222​8852

	16.	 Guha Roy, D., Mahato, B., De, D., Buyya, R.: Application-aware end-to-end delay and message
loss estimation in internet of things (iot) - mqtt-sn protocols. Future Gener. Comput. Syst. 89,
300–316 (2018). https://​doi.​org/​10.​1016/j.​future.​2018.​06.​040

	17.	 Stanford-Clark, A., Truong, H.: Mqtt-sn version 1.2. Protocol Specification, Oasis (2013)
	18.	 Roldán-Gómez, J., Carrillo-Mondéjar, J., Castelo Gómez, J.M., Ruiz-Villafranca, S.: Security

analysis of the mqtt-sn protocol for the internet of things. Appl. Sci. 12(21), 10991 (2022).
https://​doi.​org/​10.​3390/​app12​21109​91

	19.	 Mishra, B., Kertesz, A.: The use of mqtt in m2m and iot systems: a survey. IEEE Access 8,
201071–201086 (2020). https://​doi.​org/​10.​1109/​access.​2020.​30358​49

	20.	 Silva, E.F., Dembogurski, B.J., Vieira, A.B., Ferreira, F.H.C.: Ieee p21451-1-7: Providing more
efficient network services over mqtt-sn. In: 2019 IEEE sensors applications symposium (SAS)
(2019). https://​doi.​org/​10.​1109/​sas.​2019.​87061​07

	21.	 Martí, M., Garcia-Rubio, C., Campo, C.: Performance evaluation of coap and mqtt_sn in an iot
environment. Proceedings (2019). https://​doi.​org/​10.​3390/​proce​eding​s2019​031049

	22.	 Nikol, G.: Arduino based MQTT-SN Client. GitHub (2018)
	23.	 Project, Z.: Zephyr Project MQTT-SN Client. GitHub (2024)
	24.	 Robenko, A.: CommsChampion Ecosystem MQTT-SN Client. GitHub (2024)
	25.	 HiveMQ: HiveMQ Edge MQTT-SN Gateway. https://​docs.​hivemq.​com/​hivemq-​edge/​mqtt-​sn-​

gatew​ay.​html. Accessed: 2024-04-23
	26.	 Koenkk: Zigbee2MQTT. GitHub (2024)
	27.	 Hussein, N., Nhlabatsi, A.: Living in the dark: Mqtt-based exploitation of iot security vulner-

abilities in zigbee networks for smart lighting control. IoT 3(4), 450–472 (2022). https://​doi.​org/​
10.​3390/​iot30​40024

	28.	 Ansari, A.M., Nazir, M., Mustafa, K.: Smart homes app vulnerabilities, threats, and solutions: a sys-
tematic literature review. J. Netw. Syst. Manag. (2024). https://​doi.​org/​10.​1007/​s10922-​024-​09803-1

	29.	 Zaheer, H., Shoaib, M., Iqbal, F., Arshad, S., Altaf, A., Villena, E.G., Torre Diez, I., Ashraf,
I.: An energy-efficient technique to secure internet of things devices using blockchain. J. Netw.
Syst. Manag. (2024). https://​doi.​org/​10.​1007/​s10922-​024-​09870-4

	30.	 Roldán-Gómez, J., Carrillo-Mondéjar, J., Castelo Gómez, J.M., Ruiz-Villafranca, S.: Security
analysis of the mqtt-sn protocol for the internet of things. Appl. Sci. 12(21), 10991 (2022)

	31.	 Roldán-Gómez, J., Carrillo-Mondéjar, J., Gómez, J.M.C., Martínez, J.L.M.: Security assessment
of the mqtt-sn protocol for the internet of things. J. Phys: Conf. Ser. 2224(1), 012079 (2022).
https://​doi.​org/​10.​1088/​1742-​6596/​2224/1/​012079

	32.	 Dos Santos, R.P., Leithardt, V.R.Q., Beko, M.: Analysis of mqtt-sn and lwm2m communication
protocols for precision agriculture iot devices. In: 2022 17th Iberian conference on information

https://doi.org/10.1109/jiot.2023.3236694
https://doi.org/10.1109/jiot.2023.3236694
https://doi.org/10.1109/jiot.2023.3332507
https://doi.org/10.1109/jiot.2023.3332507
https://doi.org/10.1109/TCOM.1980.1094702
https://doi.org/10.1109/wfcs57264.2023.10144241
https://doi.org/10.1109/ICSITech46713.2019.8987546
https://doi.org/10.1109/ICSITech46713.2019.8987546
https://doi.org/10.1007/s10207-024-00828-w
https://doi.org/10.1007/S00530-020-00674-5
https://doi.org/10.3390/s22228852
https://doi.org/10.1016/j.future.2018.06.040
https://doi.org/10.3390/app122110991
https://doi.org/10.1109/access.2020.3035849
https://doi.org/10.1109/sas.2019.8706107
https://doi.org/10.3390/proceedings2019031049
https://docs.hivemq.com/hivemq-edge/mqtt-sn-gateway.html
https://docs.hivemq.com/hivemq-edge/mqtt-sn-gateway.html
https://doi.org/10.3390/iot3040024
https://doi.org/10.3390/iot3040024
https://doi.org/10.1007/s10922-024-09803-1
https://doi.org/10.1007/s10922-024-09870-4
https://doi.org/10.1088/1742-6596/2224/1/012079

Journal of Network and Systems Management (2025) 33:37 	 Page 33 of 34  37

systems and technologies (CISTI), pp. 1–6 (2022). https://​doi.​org/​10.​23919/​CISTI​54924.​2022.​
98200​48

	33.	 Park, C.-S., Nam, H.-M.: Security architecture and protocols for secure mqtt-sn. IEEE Access 8,
226422–226436 (2020). https://​doi.​org/​10.​1109/​access.​2020.​30454​41

	34.	 Sadio, O., Ngom, I., Lishou, C.: Lightweight security scheme for mqtt/mqtt-sn protocol. In:
2019 Sixth international conference on internet of things: systems, management and security
(IOTSMS). IEEE, pp. 119–123 (2019)

	35.	 Fontes, F., Rocha, B., Mota, A., Pedreiras, P., Silva, V.: Extending mqtt-sn with real-time communi-
cation services. In: 2020 25th IEEE international conference on emerging technologies and factory
automation (ETFA). IEEE, vol. 1, pp. 1–4 (2020)

	36.	 Eclipse Foundation: Eclipse Paho. https://​www.​eclip​se.​org/​paho Accessed 2023-05-29
	37.	 Eclipse: Eclipse Paho MQTT-SN C/C++ client for Embedded platforms. GitHub (2024)
	38.	 Zohourian, A., Dadkhah, S., Neto, E.C.P., Mahdikhani, H., Danso, P.K., Molyneaux, H., Ghor-

bani, A.A.: Iot zigbee device security: a comprehensive review. Internet Things 22, 100791 (2023).
https://​doi.​org/​10.​1016/j.​iot.​2023.​100791

	39.	 Stangaciu, C., Micea, M., Cretu, V.: An analysis of a hard real-time execution environment exten-
sion for freertos. Adv. Electric. Comput. Eng. 15(3), 79–86 (2015). https://​doi.​org/​10.​4316/​aece.​
2015.​03011

	40.	 Eclipse Foundation: Eclipse Paho Embedded MQTT-SN C/C++ Client. https://​www.​eclip​se.​org/​
paho/​index.​php?​page=​clien​ts/c/​embed​ded-​sn/​index.​php Accessed 2023-05-29

	41.	 Stangaciu, V., Stangaciu, C., Curiac, D.: Timer software: A software timer library for embedded
real-time systems. Available at SSRN 4527250 (2023) https://​doi.​org/​10.​2139/​ssrn.​45272​50

	42.	 Stangaciu, V.: TIMER SOFTWARE. GitHub (2023)
	43.	 Martin, T.: The insider’s guide to the Philips ARM7-based microcontrollers. Coventry, Hitex (2005)
	44.	 NXP: LPC2101/02/03 Singlechip 16-bit/32-bit microcontrollers. https://​www.​nxp.​com/​docs/​en/​

data-​sheet/​LPC21​01_​02_​03.​pdf. Accessed: 2024-04-05 (2009)
	45.	 NXP: LPC2141/42/44/46/48 SingleChip 16-bit/32-bit microcontrollers. https://​www.​nxp.​com/​docs/​

en/​data-​sheet/​LPC21​41_​42_​44_​46_​48.​pdf. Accessed: 2024-04-10 (2011)
	46.	 Digi International Inc.: XBee®/XBee-PRO S2C Zigbee RF Module. User guide. https://​www.​digi.​

com/​resou​rces/​docum​entat​ion/​digid​ocs/​pdfs/​90002​002.​pdf. Accessed: 2024-04-10 (2022)
	47.	 Stangaciu, C., Micea, M., Cretu, V.: An analysis of a hard real-time execution environment exten-

sion for freertos. Adv. Electric. Comput. Eng. 15(3), 79–87 (2015)
	48.	 Barry, R.: Freertos reference manual: Api functions and configuration options, real time engineers

ltd. URL: http://www. freertos. org (2009)
	49.	 Micea, M.V., Cretu, V., Groza, V.: Predictable signal generation with the hard real-time operating

kernel Haretick. In: 2005 IEEE instrumentation and measurement technology conference proceed-
ings. IEEE, vol. 3, pp. 2097–2102 (2005)

	50.	 Micea, M.V., Stangaciu, V., Stangaciu, C., Filote, C.: Sensor-level real-time support for xbee-based
wireless communication. In: Proceedings of the 2011 2nd International congress on computer appli-
cations and computational science. Springer, pp. 147–154 (2012)

	51.	 Cioarga, R.-D., Micea, M.V., Ciubotaru, B., Chiuciudean, D., Stanescu, D.: CORE-TX: Collective
robotic environment-The timisoara experiment. In: Proceedings of the Third Romanian-Hungarian
Joint Symposium on Applied Computational Intelligence, SACI (2006)

	52.	 Stangaciu, V., Stangaciu, C., Curiac, D.-I., Micea, M.V.: Parsecs_rt: a real-time parsecs-based com-
munication protocol stack for critical sensing applications. Internet Things 25, 101139 (2024).
https://​doi.​org/​10.​1016/j.​iot.​2024.​101139

	53.	 Raspberry PI: Datasheet Raspberry PI 3 Model B Technical Specification. [Online], http://​www.​
farne​ll.​com/​datas​heets/​20279​12.​pdf

	54.	 Dieguez Castro, J.: Arch Linux, pp. 235–252. Apress, Berkeley, CA (2016)
	55.	 Pautet, L., Robert, T., Tardieu, S.: Litmus-rt plugins for global static scheduling of mixed criticality

systems. J. Syst. Arch. 118, 102221 (2021). https://​doi.​org/​10.​1016/j.​sysarc.​2021.​102221
	56.	 Intel Corporation: Intel NUC Board NUC5CPYB and Intel NUC Board NUC5PPYB Technical

Product Specification, rev. 10. [Online],https://www.intel.com/content/dam/support/us/en/docu-
ments/mini-pcs/nuc-kits/NUC5CPYB_NUC5PPYB_TechProdSpec.pdf (2017)

	57.	 Roger Light: Eclipse mosquitto_sub Man Page. https://​mosqu​itto.​org/​man/​mosqu​itto_​sub-1.​html.
Accessed: 2024-04-23

	58.	 Thomas Nordquist: MQTT-Explorer. https://​github.​com/​ thoma​snord​quist/​MQTT-​Explo​rer.
Accessed: 2024-04-23 (2019)

https://doi.org/10.23919/CISTI54924.2022.9820048
https://doi.org/10.23919/CISTI54924.2022.9820048
https://doi.org/10.1109/access.2020.3045441
https://www.eclipse.org/paho
https://doi.org/10.1016/j.iot.2023.100791
https://doi.org/10.4316/aece.2015.03011
https://doi.org/10.4316/aece.2015.03011
https://www.eclipse.org/paho/index.php?page=clients/c/embedded-sn/index.php
https://www.eclipse.org/paho/index.php?page=clients/c/embedded-sn/index.php
https://doi.org/10.2139/ssrn.4527250
https://www.nxp.com/docs/en/%20data-sheet/LPC2101_02_03.pdf
https://www.nxp.com/docs/en/%20data-sheet/LPC2101_02_03.pdf
https://www.nxp.com/docs/en/data-sheet/LPC2141_42_44_46_48.pdf
https://www.nxp.com/docs/en/data-sheet/LPC2141_42_44_46_48.pdf
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf
https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf
https://doi.org/10.1016/j.iot.2024.101139
http://www.farnell.com/datasheets/2027912.pdf
http://www.farnell.com/datasheets/2027912.pdf
https://doi.org/10.1016/j.sysarc.2021.102221
https://mosquitto.org/man/mosquitto_sub-1.html
https://github.com/%20thomasnordquist/MQTT-Explorer

	 Journal of Network and Systems Management (2025) 33:37 37   Page 34 of 34

	59.	 Saleae Logic Analyzers. https://​www.​saleae.​com. Accessed: 2025-01-08

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Valentin Stangaciu  is a lecturer at Politehnica University of Timisoara and a researcher at DSPLabs,
part of the Computer and Information Technology Department. His research interests include
IoT, communication protocols, and embedded systems, having a PhD thesis in real-time wireless
communication protocols. He also introduced the “Data Transmission Coding and Compression” course
for the Information Technology Master program. He was a member of different research grants teams, of
which three were conducted in partnership with the industry.

Cristina Stangaciu  (born Cristina Sorina Certejan) is a lecturer and a research engineer at the Department
of Computer and Information Technology, Politehnica University of Timisoara. Her research areas and
interests include embedded and real-time hardware-software systems, the Internet of Things, and power
management in embedded devices, having a PhD thesis in energy efficient real-time scheduling on
embedded systems. She received an award from ANIS România, in 2021 for introducing the “Operating
System for IoT” course for the Cloud Computing and Internet of Things Master program. She was a
member of five research and development grant teams, of which three represented an academic and
industry collaboration.

Bianca Gusita  is a PhD student in the Computer and Information Technology field at Politehnica
University of Timisoara. The domain of her thesis is Cybersecurity for IoT.

Daniel‑Ioan Curiac  is a professor in the Department of Automation and Applied Informatics, Politehnica
University of Timisoara, Romania and a Senior Member of IEEE. His current research interests include
cyber physical systems, robotic systems, real-time adaptive systems, and information security. He is the
author or co-author of more than 100 scientific papers.

https://www.saleae.com

	Integrating Real-Time Wireless Sensor Networks into IoT Using MQTT-SN
	Abstract
	1 Introduction
	2 Related Work
	3 Hybrid IoT Real-Time Network
	4 MQTT-SN Real-Time Platform Independent Driver
	5 Implementation and Experimental Results
	6 Conclusion and Future Work
	References

